Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Toxicol Sci ; 198(2): 288-302, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38290791

RESUMEN

Anthracyclines, such as doxorubicin (adriamycin), daunorubicin, or epirubicin, rank among the most effective agents in classical anticancer chemotherapy. However, cardiotoxicity remains the main limitation of their clinical use. Topoisomerase IIß has recently been identified as a plausible target of anthracyclines in cardiomyocytes. We examined the putative topoisomerase IIß selective agent XK469 as a potential cardioprotective and designed several new analogs. In our experiments, XK469 inhibited both topoisomerase isoforms (α and ß) and did not induce topoisomerase II covalent complexes in isolated cardiomyocytes and HL-60, but induced proteasomal degradation of topoisomerase II in these cell types. The cardioprotective potential of XK469 was studied on rat neonatal cardiomyocytes, where dexrazoxane (ICRF-187), the only clinically approved cardioprotective, was effective. Initially, XK469 prevented daunorubicin-induced toxicity and p53 phosphorylation in cardiomyocytes. However, it only partially prevented the phosphorylation of H2AX and did not affect DNA damage measured by Comet Assay. It also did not compromise the daunorubicin antiproliferative effect in HL-60 leukemic cells. When administered to rabbits to evaluate its cardioprotective potential in vivo, XK469 failed to prevent the daunorubicin-induced cardiac toxicity in either acute or chronic settings. In the following in vitro analysis, we found that prolonged and continuous exposure of rat neonatal cardiomyocytes to XK469 led to significant toxicity. In conclusion, this study provides important evidence on the effects of XK469 and its combination with daunorubicin in clinically relevant doses in cardiomyocytes. Despite its promising characteristics, long-term treatments and in vivo experiments have not confirmed its cardioprotective potential.


Asunto(s)
Antraciclinas , Quinoxalinas , Inhibidores de Topoisomerasa II , Ratas , Animales , Conejos , Inhibidores de Topoisomerasa II/toxicidad , Inhibidores de Topoisomerasa II/uso terapéutico , Antraciclinas/toxicidad , Antraciclinas/uso terapéutico , Cardiotoxicidad , Daunorrubicina/toxicidad , Daunorrubicina/uso terapéutico , Doxorrubicina/toxicidad , Antibióticos Antineoplásicos/toxicidad , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/uso terapéutico , Daño del ADN
2.
J Pharm Biomed Anal ; 225: 115220, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36610173

RESUMEN

Ixazomib is the only orally active proteasome inhibitor used in clinical practice as an anticancer drug. The novel, rapid UHPLC-UV assay for ixazomib was developed and applied to the forced degradation study followed by HRMS identification of the main degradation products. Oxidative deboronation and hydrolysis of the amid bond were found to be the principal degradation pathways. The chemical standards of the main degradation products were prepared. The method was validated for the simultaneous assay of ixazomib and its degradation products within the concentration ranges of 2.50-100.00 µg/mL (ixazomib); 0.75-60.00 µg/mL (Impurity A and B) and 1.25-60.00 µg/mL (Impurity C). The stability study revealed that ixazomib in solution is: 1) relatively stable in neutral and acidic environments, 2) its decomposition is accelerated at higher pH, 3) it is sensitive to the effects of oxidants and light, and 4) the degradation of ixazomib follows the first-order kinetics under neutral, acidic, alkaline, and UV stress. Contrary, the solid substance of ixazomib citrate was relatively resistant to heat (70 °C), heat/humidity (70 °C/75 % RH), and UV irradiation for 24 h. This study presents the first MS-compatible UHPLC method for the quantification of ixazomib and its degradation products. Furthermore, it provides data about the inherent stability and kinetics of degradation of ixazomib in a solution that may be useful in further investigation of this drug, or the development of novel proteasome inhibitors based on the ixazomib structure.


Asunto(s)
Antineoplásicos , Glicina , Cromatografía Líquida de Alta Presión/métodos , Compuestos de Boro , Inhibidores de Proteasoma , Estabilidad de Medicamentos , Hidrólisis , Oxidación-Reducción
3.
J Med Chem ; 64(7): 3997-4019, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33750129

RESUMEN

Cardioprotective activity of dexrazoxane (ICRF-187), the only clinically approved drug against anthracycline-induced cardiotoxicity, has traditionally been attributed to its iron-chelating metabolite. However, recent experimental evidence suggested that the inhibition and/or depletion of topoisomerase IIß (TOP2B) by dexrazoxane could be cardioprotective. Hence, we evaluated a series of dexrazoxane analogues and found that their cardioprotective activity strongly correlated with their interaction with TOP2B in cardiomyocytes, but was independent of their iron chelation ability. Very tight structure-activity relationships were demonstrated on stereoisomeric forms of 4,4'-(butane-2,3-diyl)bis(piperazine-2,6-dione). In contrast to its rac-form 12, meso-derivative 11 (ICRF-193) showed a favorable binding mode to topoisomerase II in silico, inhibited and depleted TOP2B in cardiomyocytes more efficiently than dexrazoxane, and showed the highest cardioprotective efficiency. Importantly, the observed ICRF-193 cardioprotection did not interfere with the antiproliferative activity of anthracycline. Hence, this study identifies ICRF-193 as the new lead compound in the development of efficient cardioprotective agents.


Asunto(s)
Cardiotónicos/uso terapéutico , Cardiotoxicidad/tratamiento farmacológico , Piperazinas/uso terapéutico , Inhibidores de Topoisomerasa II/uso terapéutico , Animales , Animales Recién Nacidos , Cardiotónicos/síntesis química , Cardiotónicos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Daunorrubicina/toxicidad , Dicetopiperazinas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Miocitos Cardíacos/efectos de los fármacos , Piperazinas/síntesis química , Piperazinas/metabolismo , Unión Proteica , Ratas Wistar , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/metabolismo
4.
Sci Rep ; 11(1): 4456, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627707

RESUMEN

The bisdioxopiperazine topoisomerase IIß inhibitor ICRF-193 has been previously identified as a more potent analog of dexrazoxane (ICRF-187), a drug used in clinical practice against anthracycline cardiotoxicity. However, the poor aqueous solubility of ICRF-193 has precluded its further in vivo development as a cardioprotective agent. To overcome this issue, water-soluble prodrugs of ICRF-193 were prepared, their abilities to release ICRF-193 were investigated using a novel UHPLC-MS/MS assay, and their cytoprotective effects against anthracycline cardiotoxicity were tested in vitro in neonatal ventricular cardiomyocytes (NVCMs). Based on the obtained results, the bis(2-aminoacetoxymethyl)-type prodrug GK-667 was selected for advanced investigations due to its straightforward synthesis, sufficient solubility, low cytotoxicity and favorable ICRF-193 release. Upon administration of GK-667 to NVCMs, the released ICRF-193 penetrated well into the cells, reached sufficient intracellular concentrations and provided effective cytoprotection against anthracycline toxicity. The pharmacokinetics of the prodrug, ICRF-193 and its rings-opened metabolite was estimated in vivo after administration of GK-667 to rabbits. The plasma concentrations of ICRF-193 reached were found to be adequate to achieve cardioprotective effects in vivo. Hence, GK-667 was demonstrated to be a pharmaceutically acceptable prodrug of ICRF-193 and a promising drug candidate for further evaluation as a potential cardioprotectant against chronic anthracycline toxicity.


Asunto(s)
Antraciclinas/efectos adversos , Cardiotónicos/farmacología , Cardiotoxicidad/tratamiento farmacológico , ADN-Topoisomerasas de Tipo II/metabolismo , Dicetopiperazinas/farmacología , Piperazina/farmacología , Inhibidores de Topoisomerasa II/farmacología , Animales , Cardiotónicos/química , Cardiotoxicidad/metabolismo , Dexrazoxano/química , Dexrazoxano/farmacología , Dicetopiperazinas/química , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Piperazina/química , Profármacos/química , Profármacos/farmacología , Conejos , Razoxano/química , Razoxano/farmacología , Inhibidores de Topoisomerasa II/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA