Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Appl Biomater Funct Mater ; 22: 22808000241272487, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39212217

RESUMEN

This study explores the effect of using dental brushes with or without metacrylate-based modeling resins on long-term color stability and surface topographies of resin-based composites. This study examined the effects of two variables: (1) the type of brush used (Art brush, Micro-brush, or Mylar strip) and (2) the application of a modeling resin (applied or not applied). The specimens were artificially aged through 10,000 cycles of thermocycling and subsequently immersed in coffee for 30 days. Measurements of color and surface roughness were taken at baseline and after the aging, using a non-contact profilometer for surface roughness and a spectrophotometer for color. Data were analyzed using paired t-tests and one-way ANOVA. Resin-based composites smoothed with dental brushes or micro brushes without modeling resins exhibited lower color change (ΔE) than other groups. Paired t-tests revealed significant differences in average surface roughness (Ra) and valley depth (Rv) for each surfacing technique before and after aging (p ⩽ 0.01). The root means square average of the profile heights (Rq) significantly increased in the control and micro-brush groups (p ⩽ 0.01). In conclusion, the use of brushes in resin-based composites placement does not increase the susceptibility to staining. Instead, the inclusion of resin modeling contributes to discoloration over time.


Asunto(s)
Color , Resinas Compuestas , Propiedades de Superficie , Resinas Compuestas/química , Ensayo de Materiales
2.
Gen Dent ; 72(5): 54-59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39151083

RESUMEN

A conservative approach to restoration assists in preserving the remaining tooth structure of extensively destroyed vital teeth. This case report describes a single-appointment chairside technique for placement of ceramic restorations in posterior teeth. A patient presented for treatment of her mandibular right first molar, which had a fractured resin-based composite restoration. Due to the presence of vital pulp, extent of the restoration, and presence of caries in the tooth, the following treatment plan was proposed: placement of a lithium disilicate glass-ceramic onlay fabricated with a computer-aided design/computer-aided manufacturing workflow. After the dentist removed the restoration and performed selective caries removal, structural analysis guided the reduction of the buccal cusps. Immediate dentin sealing was performed with a 2-step self-etching adhesive system, and a 1-mm-thick layer of flowable resin-based composite was placed as a resin coating. A digital impression was obtained, the onlay restoration was designed, and a lithium disilicate block was milled and subsequently crystallized. When the onlay was completed, the tooth preparation was sandblasted, selectively etched, and coated with a universal adhesive. The intaglio surface of the onlay was cleaned and primed, the onlay was bonded with dual-cure resin cement, and occlusal adjustments were completed. Follow-up examinations at 1 and 4 months revealed the clinical success of the case. From start to finish, it takes approximately 2.5 hours to produce a single-appointment chairside restoration. The technique used in this case offers a fast-paced workflow that is comfortable and practical for the patient and provides a predictable clinical outcome without the need for a temporary restoration.


Asunto(s)
Cerámica , Resinas Compuestas , Diseño Asistido por Computadora , Incrustaciones , Humanos , Resinas Compuestas/uso terapéutico , Femenino , Cerámica/uso terapéutico , Fracaso de la Restauración Dental , Diente Molar , Porcelana Dental/uso terapéutico , Restauración Dental Permanente/métodos
3.
Dent Mater ; 40(10): e41-e51, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38942710

RESUMEN

OBJECTIVE: Streptococcus mutans (S. mutans) is a major contributor to dental caries, with its ability to synthesize extracellular polysaccharides (EPS) and biofilms. The gcrR gene is a regulator of EPS synthesis and biofilm formation. The objectives of this study were to investigate a novel strategy of combining gcrR gene over-expression with dimethylaminohexadecyl methacrylate (DMAHDM), and to determine their in vivo efficacy in reducing caries in rats for the first time. METHODS: Two types of S. mutans were tested: Parent S. mutans; and gcrR gene over-expressed S. mutans (gcrR OE S. mutans). Bacterial minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were measured with DMAHDM and chlorhexidine (CHX). Biofilm biomass, polysaccharide, lactic acid production, live/dead staining, colony-forming units (CFUs), and metabolic activity (MTT) were evaluated. A Sprague-Dawley rat model was used with parent S. mutans and gcrR OE S. mutans colonization to determine caries-inhibition in vivo. RESULTS: Drug-susceptibility of gcrR OE S. mutans to DMAHDM or CHX was 2-fold higher than that of parent S. mutans. DMAHDM reduced biofilm CFU by 3-4 logs. Importantly, the combined gcrR OE S. mutans+ DMAHDM dual strategy reduced biofilm CFU by 5 logs. In the rat model, the parent S. mutans group had a higher cariogenicity in dentinal (Dm) and extensive dentinal (Dx) regions. The DMAHDM + gcrR OE group reduced the Dm and Dx caries to only 20 % and 0 %, those of parent S. mutans + PBS control group (p < 0.05). The total caries severity of gcrR OE + DMAHDM group was decreased to 51 % that of parent S. mutans control (p < 0.05). SIGNIFICANCE: The strategy of combining S. mutans gcrR over-expression with antibacterial monomer reducing biofilm acids by 97 %, and reduced in vivo total caries in rats by 48 %. The gcrR over-expression + DMAHDM strategy is promising for a wide range of dental applications to inhibit caries and protect tooth structures.


Asunto(s)
Antibacterianos , Biopelículas , Caries Dental , Metacrilatos , Pruebas de Sensibilidad Microbiana , Streptococcus mutans , Animales , Masculino , Ratas , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Clorhexidina/farmacología , Caries Dental/microbiología , Caries Dental/tratamiento farmacológico , Metacrilatos/farmacología , Ratas Sprague-Dawley , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética
4.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791097

RESUMEN

The field of dental materials is rapidly evolving, and this Special Issue of the International Journal of Molecular Sciences offers a comprehensive examination of the latest advancements in process design and development strategies [...].


Asunto(s)
Materiales Dentales , Materiales Dentales/uso terapéutico , Humanos
5.
J Dent Educ ; 88(7): 895-899, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38532660

RESUMEN

The dilemma surrounding faculty shortages within dental education continues to present significant challenges for the dental profession. There remains a tremendous need to create an effective and sustainable pathway for the recruitment of faculty into dental academia, with an emphasis on the establishment of a more diverse and representative faculty composition. This perspective paper proposes a blueprint to nurture and inspire dental students into academia.


Asunto(s)
Selección de Profesión , Docentes de Odontología , Selección de Personal , Estudiantes de Odontología , Humanos , Educación en Odontología , Predicción , Facultades de Odontología
6.
J Endod ; 50(6): 844-851, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38369102

RESUMEN

INTRODUCTION: This study evaluates the feasibility of an augmented reality (AR) head-mounted device (HMD) displaying a dynamic navigation system (DNS) in the surgical site for fiber postremoval in maxillary molars and compares it to the DNS technique. METHODS: Fifty maxillary first molars were divided into 2 groups: AR HMD + DNS (n = 25) and DNS (n = 25). The palatal canal was restored with RelyX fiber post (3M ESPE) luted with RelyX Unicem (3M ESPE). A core buildup was performed using Paracore (Coltene/Whaledent). Cone beam computed tomography (CBCT) scans were taken before and after postremoval. The drilling trajectory and depth were planned under X-guide software (X-Nav Technologies, Lansdale, PA). For the AR HMD + DNS group, the AR HMD (Microsoft HoloLens 2) displayed the DNS in the surgical site. The three dimensional (3D) deviations (Global coronal deviation [GCD] and global apical deviation [GAD]) and angular deflection (AD) were calculated. The number of mishaps and operating time were recorded. RESULTS: Fiber post was removed from all samples (50/50). The AR HMD + DNS was more accurate than DNS, showing significantly lower GCD and GAD deviations and AD (P < .05). No mishap was detected. The AR HMD + DNS was as efficient in time as DNS (P > .05). CONCLUSIONS: Within the limitations of this in vitro study, the AR HMD can safely display DNS in the surgical site for fiber post-removal in maxillary molars. AR HMD improved the DNS accuracy. Both AR HMD + DNS and DNS were time-efficient for fiber postremoval in maxillary molars.


Asunto(s)
Realidad Aumentada , Tomografía Computarizada de Haz Cónico , Maxilar , Diente Molar , Humanos , Maxilar/cirugía , Cirugía Asistida por Computador/métodos , Estudios de Factibilidad
7.
Clin Oral Investig ; 27(6): 2465-2481, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37017759

RESUMEN

OBJECTIVES: The aim of this review to overview three-dimensional (3D) printing technologies available for different dental disciplines, considering the applicability of such technologies and materials development. MATERIALS AND METHODS: Source Arksey and O'Malley's five stages framework using PubMed, EMBASE, and Scopus (Elsevier) databases managed this review. Papers focusing on 3D printing in dentistry and written in English were screened. Scientific productivity by the number of publications, areas of interest, and the focus of the investigations in each dental discipline were extracted. RESULTS: Nine hundred thirty-four studies using 3D printing in dentistry were assessed. Limited clinical trials were observed, especially in Restorative, endodontics, and pediatric dentistry. Laboratory or animal studies are not reliable for clinical success, suggesting that clinical trials are a good approach to validate the new methods' outcomes and ensure that the benefits outweigh the risk. The most common application for 3D printing technologies is to facilitate conventional dental procedures. CONCLUSIONS: The constantly improving quality of 3D printing applications has contributed to increasing the popularity of these technologies in dentistry; however, long-term clinical studies are necessary to assist in defining standards and endorsing the safe application of 3D printing in dental practice. CLINICAL RELEVANCE: The recent progress in 3D materials has improved dental practice capabilities over the last decade. Understanding the current status of 3D printing in dentistry is essential to facilitate translating its applications from laboratory to the clinical setting.


Asunto(s)
Endodoncia , Impresión Tridimensional , Humanos , Odontología Pediátrica , Atención Odontológica
8.
Bioengineering (Basel) ; 9(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36290538

RESUMEN

There is a critical need for an accurate device for orthodontists to know the magnitude of forces exerted on the tooth by the orthodontic brackets. Here, we propose a new orthodontic force measurement principle to detect the deformation of the elastic semi-sphere sensor. Specifically, we aimed to detail technical issues and the feasibility of the sensor performance attached to the inner surface of the orthodontic aligner or on the tooth surface. Accurate force tracking is important for the optimal decision of aligner replacement and cost reduction. A finite element (FE) model of the semi-sphere sensor was developed, and the relationship between the force and the contact area change was investigated. The prototype was manufactured, and the force detection performance was experimentally verified. In the experiment, the semi-sphere sensor was manufactured using thermoplastic polymer, and a high-precision mold sized 3 mm in diameter. The change in the contact area in the semi-sphere sensor was captured using a portable microscope. Further development is justified, and future implementation of the proposed sensor would be an array of multiple semi-sphere sensors in different locations for directional orthodontic force detection.

9.
J Funct Biomater ; 13(4)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36278659

RESUMEN

Current dental adhesives lack antibacterial properties. This study aimed to explore the effect of incorporating benzyldimethyldodecyl ammonium chloride (BDMDAC) on the degree of conversion, contact angle, ultimate tensile strength (UTS), microtensile bond strength (µTBS), cytotoxicity, antibacterial and bonding performance after artificial aging. A dental adhesive was doped with BDMDAC in the concentration range of 1-5 wt.%. For antibacterial assays, the BDMDAC compound was subject to planktonic cells of Streptococcus mutans. Then, after incorporation into the dental adhesive, an S. mutans biofilm model was used to grow 48 h-mature biofilms. The biofilms grown over the formulated materials were assessed by colony-forming unit (CFU) counting assay and fluorescence microscopy staining. In addition, the cytotoxicity was evaluated. Samples were subjected to 10,000 thermal cycles for aging and evaluated by UTS, µTBS, and CFU. Incorporating BDMDAC did not increase the cytotoxicity or change the physical properties when the mass fraction of the BDMDAC was 1-5 wt.%. The UTS of BDMDAC-doped adhesives was not impaired immediately or over time. A significant bacterial reduction was obtained for the mass fraction of the BDMDAC greater than 3 wt.%. However, the BDMDAC-doped adhesives did not offer an antibacterial effect after artificial aging. The overall results indicate that the BDMDAC strategy has the potential to control of microbial growth of cariogenic planktonic cells and biofilms. However, other new technological approaches are needed to overcome the deleterious effect of BDMDAC release over time such as those based on the principle of drug delivery systems whereby the BDMDAC is transported on microparticles or core shells, providing tangible benefits to oral health over time.

10.
J Dent ; 126: 104312, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36184005

RESUMEN

OBJECTIVE: In most clinical circumstances, secondary caries at the margin of fixed dental restorations leads to restoration failure and replacement. Accordingly, the objectives of this study were to: (1) develop a novel rechargeable nano-calcium phosphate (NACP) and nano-calcium fluoride (nCaF2) resin-based cement; and (2) investigate their mechanical properties and calcium (Ca), phosphate (P), and fluoride (F) ion release, recharge, and re-release for the first time. METHODS: The cement matrix consisted of pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol-A-dimethacrylate (EBPADMA) was denoted PEHB. Four cements were fabricated: (1) PEHB+0%NACP+0%nCaF2 (experimental control); (2) PEHB+25%NACP+0%nCaF2, (3) PEHB+0%NACP+25%nCaF2; (4) PEHB+12.5%NACP+12.5% nCaF2. RelyX luting cement was used as a commercial control. Mechanical properties and long-term Ca, P, and F ion release, recharge, and re-release were evaluated. RESULTS: Adding 25% NACP, 25% nCaF2 and adding both 12.5% NACP and 12.5% nCaF2 to the cement matrix presented a significantly higher shear bond strength, flexural strength compared to the commercial control (p < 0.05) with a comparable outcome with no significant different (p > 0.05) compared to experimental control. The film thickness results of all cement groups met the ISO requirement (<50 µm). The resin cement group with both 12.5% NACP and 12.5% nCaF2 successfully released Ca, P, and F ions at 3.1 ± 0.01, 1.1 ± 0.05, and 0.51±0.01 mmol/L respectively. Moreover, it showed the ability to re-release Ca, P, and F ions at 0.62±0.01, 0.12±0.01, and 0.42±0.01 mmol/L respectively. CONCLUSIONS: The resin cement group with both 12.5% NACP and 12.5% nCaF2 demonstrated the advantages of both types of bio-interactive fillers as it could release a higher level of ions than the resin cement with 25%nCAF2 and exhibited a better rechargeability compared to the resin cement with 25%NACP. CLINICAL SIGNIFICANCE: The ability of this novel resin-based cement to release, recharge, and re-release Ca, P, and F ions could be one of the keys to lengthening the survivability of fixed dental restorations. These features could help to reduce the onset of secondary caries by enhancing the remineralization and preventing the demineralization of tooth structures.


Asunto(s)
Caries Dental , Cementos de Resina , Humanos , Fluoruros , Fluoruro de Calcio , Glicerol , Fosfatos de Calcio/química , Metacrilatos/química , Cementos Dentales/química , Materiales Dentales , Caries Dental/prevención & control , Biopelículas , Antibacterianos
11.
Dent Clin North Am ; 66(4): 551-566, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216446

RESUMEN

Bioactive materials for dental resin restorations are a rising field of investigation exploring treatment strategies for reducing the recurrence of carious lesions. The current effort has been directed toward developing dental materials that can inhibit biofilms and prevent tooth mineral loss. Bioactive resin materials have shown the potential to interfere with polymicrobial consortia in vivo and help maintain the lifespan of restorations.


Asunto(s)
Resinas Compuestas , Caries Dental , Biopelículas , Resinas Compuestas/uso terapéutico , Caries Dental/prevención & control , Materiales Dentales/uso terapéutico , Restauración Dental Permanente , Humanos
12.
Restor Dent Endod ; 47(3): e29, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36090515

RESUMEN

Objectives: This study aimed to investigate the anti-erosive/abrasive effect of resin infiltration of previous deproteinized dentin. Materials and Methods: Dentin slabs were randomly assigned to 3 groups (n = 15): Control (no deproteinization; no resin infiltrant applied), RI (no deproteinization; resin infiltrant applied), and DRI (deproteinization; resin infiltrant applied). After undergoing the assigned treatment, all slabs were subjected to an in vitro cycling model for 5 days. The specimens were immersed in citric acid (0.05 M, pH = 3.75; 60 seconds; 3 times/day) and brushed (150 strokes). Between the challenges, the specimens were exposed to a remineralizing solution (60 minutes). The morphological alterations were analyzed by mechanical profilometry (µm) and scanning electron microscopy (SEM). Data were submitted to one-way analysis of variance (ANOVA) and Tukey tests (p < 0.05). Results: Control and RI groups presented mineral wear and did not significantly differ from each other (p = 0.063). DRI maintained a protective layer preserving the dentin (p < 0.001). After erosive/abrasive cycles, it was observed that in group RI, only 25% of the slabs partially evidenced the presence of the infiltrating, while, in the DRI group, 80% of the slabs presented the treated surface entirely covered by a resin-component layer protecting the dentin surface as observed in SEM images. Conclusions: The removal of the organic content allows the resin infiltrant to efficiently protect the dentin surface against erosive/abrasive lesions.

13.
Dent Mater ; 38(11): 1689-1702, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115699

RESUMEN

OBJECTIVE: A low-shrinkage-stress resin-based cement with antibacterial properties could be beneficial to create a cement with lower stress at the tooth-restoration interface, which could help to enhance the longevity of the fixed dental restoration by reducing microleakage and recurrent caries. To date, there has been no report on the development of a low-shrinkage-stress and bio-interactive cement. Therefore, the objectives of this study were to develop a novel low-shrinkage-stress resin-based cement containing dimethylaminohexadecyl methacrylate (DMAHDM) and investigate the mechanical and antibacterial properties for the first time. METHODS: The monomers urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) were combined and denoted as UV resin. Three cements were fabricated: (1) UV+ 0%DMAHDM (experimental control); (2) UV+ 3%DMAHDM, (3) UV+ %5DMAHDM. RelyX Ultimate cement was used as commercial control. Mechanical properties and Streptococcus mutans (S. mutans) biofilms growth on cement were evaluated. RESULTS: The novel bio-interactive cement demonstrated excellent antibacterial and mechanical properties. Compared to commercial and experimental controls, adding DMAHDM into the UV cement significantly reduced colony forming unit (CFU) counts by approximately 7 orders of magnitude, metabolic activities from 0.29 ± 0.03 A540/cm2 to 0.01 ± 0.01 A540/cm2, and lactic acid production from 22.3 ± 0.74 mmol/L to 1.2 ± 0.27 mmol/L (n = 6) (p < 0.05). The low-shrinkage-stress cement demonstrated a high degree of conversion of around 70 %, while reducing the shrinkage stress by approximately 60%, compared to a commercial control (p < 0.05). CONCLUSIONS: The new antibacterial low-shrinkage-stress resin-based cement provides strong antibacterial action and maintains excellent mechanical properties with reduced polymerization shrinkage stress. CLINICAL SIGNIFICANCE: A low-shrinkage-stress resin-based cement containing DMAHDM was developed with potent antibacterial effects and promising mechanical properties. This cement may potentially enhance the longevity of fixed dental restoration such as a dental crown, inlay, onlay, and veneers through its excellent mechanical properties, low shrinkage stress, and strong antibacterial properties.


Asunto(s)
Metacrilatos , Cementos de Resina , Antibacterianos/farmacología , Biopelículas , Cementos Dentales , Materiales Dentales , Éteres , Ácido Láctico/metabolismo , Metacrilatos/farmacología , Metilaminas
14.
J Dent ; 122: 104140, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490839

RESUMEN

OBJECTIVE: Resin cements with remineralizing and antibacterial properties are favorable for inhibition of caries. The objectives of this study were: (1) to investigate the capability of the novel dimethylaminohexadecyl-methacrylate (DMAHDM) and nano-sized amorphous calcium phosphate (NACP) containing cement to reduce saliva microcosm biofilm, and (2) to investigate the long-term ion release, recharge, and re-release of DMAHDM-NACP cement. METHODS: Pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol-A-dimethacrylate (EBPADMA) were used to make PEHB monomer. Five cements were fabricated: (1) PEHB+0%NACP+0%DMAHDM (experimental control); (2) PEHB+25%NACP+0%DMAHDM, (3) PEHB+25%NACP+0%DMAHDM; (4) PEHB+25%NACP+3%DMAHDM; (5) PEHB+25%NACP+5%DMAHDM. RelyX luting cement was used as commercial control. Colony-forming units (CFU), lactic acid production, metabolic activities, and minimum inhibitory concentration (MIC) were performed. Long-term Calcium (Ca) and phosphate (P) ion release, recharge, and re-release were assessed. RESULTS: Compared to experimental and commercial controls, the NACP-DMAHDM cement significantly reduced CFU biofilm by 2-3 orders of magnitude, metabolic activities from 0.24±0.06 A540/cm2 to 0.03±0.01 A540/cm2, and lactic acid production from 27.7 ± 2.5 mmol/L to 5.4 ± 2.1 mmol/L (n = 6) (p<0.05). The DMAHDM showed an MIC value of 0.03 mg/L. However, when the DMAHDM was combined with PMGDM monomer, the MIC was greater than DMAHDM alone. The ion concentrations for the experimental groups significantly increased over time (1-84 days), indicating continuous ion release (n = 3) (p<0.05). Increasing the DMAHDM mass fraction from 0% to 5% and 3% to 5% significantly enhanced ion recharge and re-release at the third cycle (p<0.05). CONCLUSIONS: Incorporating DMAHDM and NACP into resin-based crown cement provides strong antibacterial action against saliva microcosm biofilm and presents a high level of Ca and P ion recharge abilities, exhibiting long-term Ca and P ion release and remineralization potential. CLINICAL SIGNIFICANCE: Resin based cement containing NACP and DMAHDM were developed with remineralizing and potent antibacterial effects. This cement formulation showed ion release and remineralization potential and are promising formulations to inhibit the incidence of recurrent caries and could promote remineralization and be sustainable for the long term.


Asunto(s)
Caries Dental , Nanopartículas , Antibacterianos/farmacología , Biopelículas , Fosfatos de Calcio/farmacología , Coronas , Cementos Dentales/farmacología , Materiales Dentales/farmacología , Humanos , Ácido Láctico/metabolismo , Metacrilatos/farmacología , Saliva/metabolismo
15.
Dent Mater ; 38(2): 397-408, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34974900

RESUMEN

OBJECTIVES: Composite restorations with calcium fluoride nanoparticles (nCaF2) can remineralize tooth structure through F and Ca ion release. However, the persistence of ion release is limited. The objectives for this study were to achieve long-term remineralization by developing a rechargeable nCaF2 nanocomposite and investigating the F and Ca recharge and re-release capabilities. METHODS: Three nCaF2 nanocomposites were formulated: (1) BT-nCaF2:Bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA); (2) PE-nCaF2:Pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA); (3) BTM-nCaF2:BisGMA, TEGDMA, and Bis[2-(methacryloyloxy)ethyl] phosphate (Bis-MEP). All formulations contained 15% nCaF2 and 55% glass particles. Initial flexural strength and elastic modulus, F and Ca ion release, recharge and re-release were tested and compared to three commercial fluoride-containing materials. RESULTS: BT and BTM nCaF2 composites were 3-4 times stronger and had elastic modulus 2 times that of resin-modified glass ionomer controls. PE-nCaF2 had comparable strength to RMGIs. All nCaF2 composites had significant F and Ca ion release and ion rechargeability. In F and Ca recharging cycles, PE-nCaF2 had the highest ion recharging capability among nCaF2 groups, followed by BT-nCaF2 and BTM-nCaF2 (p < 0.05). For all recharge cycles, ion release maintained similar levels, demonstrating long-term ion release was possible. Furthermore, after the final recharge cycle, nCaF2 nanocomposites provided continuous ion release for 42 days without further recharge. SIGNIFICANCE: Novel nCaF2 rechargeable nanocomposites exhibited significant F and Ca ion release over multiple recharge cycles, demonstrating continuous long-term ion release. These nanocomposites are promising restorations with lasting remineralization potential.


Asunto(s)
Fluoruro de Calcio , Nanocompuestos , Fosfatos de Calcio/química , Resinas Compuestas/química , Resistencia Flexional , Fluoruros , Ensayo de Materiales , Nanocompuestos/química
16.
Dent J (Basel) ; 9(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34940040

RESUMEN

The use of herbal products in oral hygiene care has a long history, and their use is popular today. A tree stick, named Salvadora persica (S. persica), is commonly used to remove dental plaque and clean teeth in many countries. In addition, extracts of S. persica can be used as a mouthwash, as they demonstrate antimicrobial properties. This study aimed to investigate the antibacterial effect of S. persica methanol and aqueous extracts against Streptococcus mutans (S. mutans) biofilm. A S. mutans biofilm formation assay was conducted using different concentrations of S. persica methanol or water extracts in tryptic soy broth (TSB) supplemented with 1% sucrose. The biofilm was stained with crystal violet dye, and the absorbance was assessed to examine biofilm formation. One-way analysis of variance (ANOVA) and Tukey tests were used to analyze the results. The S. persica methanol extract displayed a significant inhibition (p ≤ 0.001) against the S. mutans biofilm. The 10 mg/mL concentration of the S. persica methanol extract was determined as the minimum biofilm inhibitory concentration (MBIC). The used methanol concentration, mixed with TSB supplemented with 1% sucrose and without the S. persica extract, did not inhibit the S. mutans biofilm. The S. persica aqueous extract did not demonstrate any biofilm inhibition at any concentration (p ≥ 0.05). The findings of this study suggest the potential of using S. persica methanol extract as a mouthwash or adjunctive to oral hygiene tools.

17.
Restor Dent Endod ; 46(4): e51, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34909415

RESUMEN

OBJECTIVES: This study aimed to evaluate the effect of improper positioning single-peak and multi-peak lights on color change, microhardness of bottom and top, and surface topography of bulk fill and incremental composites after artificial aging for 1 year. MATERIALS AND METHODS: Bulk fill and incremental composites were cured using multi-peak and single-peak light-emitting diode (LED) following 4 clinical conditions: (1) optimal condition (no angulation or tip displacement), (2) tip-displacement (2 mm), (3) slight tip angulation (α = 20°) and (4) moderate tip angulation (α = 35°). After 1-year of water aging, the specimens were analyzed for color changes (ΔE), Vickers hardness, surface topography (Ra, Rt, and Rv), and scanning electron microscopy. RESULTS: For samples cured by single-peak LED, the improper positioning significantly increases the color change compared to the optimal position regardless of the type of composite (p < 0.001). For multi-peak LED, the type of resin composite and the curing condition displayed a significant effect on ΔE (p < 0.001). For both LEDs, the Vickers hardness and bottom/top ratio of Vickers hardness were affected by the type of composite and the curing condition (p < 0.01). CONCLUSIONS: The bulk fill composite presented greater resistance to wear, higher color stability, and better microhardness than the incremental composite when subjected to improper curing. The multi-peak LED improves curing under improper conditions compared to single-peak LED. Prevention of errors when curing composites requires the attention of all personnel involved in the patient's care once the clinical relevance of the appropriate polymerization reflects on reliable long-term outcomes.

18.
ACS Nano ; 15(12): 19888-19904, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34878250

RESUMEN

Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.


Asunto(s)
Caries Dental , Fotoquimioterapia , Antibacterianos/farmacología , Biopelículas , Caries Dental/tratamiento farmacológico , Humanos , Desarrollo Industrial , Fenómenos Magnéticos , Fármacos Fotosensibilizantes/farmacología , Streptococcus mutans
19.
Dent J (Basel) ; 9(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34435995

RESUMEN

How dentists cure a resin-based material has deleterious effects on the material's properties and its interaction with surrounding dental tissues. Biofilm accumulation has been implicated in the pathogenesis of carious lesions around dental restorations, with its composition manifesting expressed dysbiosis in patients suffering from dental caries. To evaluate the influence of varying radiant exposure on the degree of conversion (DC%), Streptococcus mutans biofilm growth, and surface roughness of bulk-fill composites under different light-curing conditions. Two light-curing units (LCU) at 600 and 1000 mW/cm2 were used to simulate curing conditions with different angulations (∢20° and ∢35°) or 2 mm-distance displacements of the LCU tip. The radiant exposure (RE) was assessed, and the composites were analyzed for DC%. Biofilm formation was induced over the bulk-fill composites and analyzed via colony-forming units counting and scanning electron microscopy (SEM). The surface roughness was analyzed via a profilometer and SEM after biofilm formation. Curing conditions with different angulation or displacement decreased RE compared to the "optimal condition". The moderately (∢35°) angulated LCU tip and low (600 mW/cm2) radiant emittance significantly reduced the DC% (p < 0.05). The difference in DC% between the top and bottom of the composites ranged from 8 to 11% for 600 mW/cm2 and 10 to 20% for 1000 mW/cm2. Greater S. mutans biofilm and surface changes were found in composites with non-optimal RE delivery (e.g., tip displacement and angulation) (p < 0.05). Inadequate polymerization of bulk-fill composites was associated with more biofilm accumulation and surface topography changes. Overall, non-optimally performed curing procedures reduced the amount of delivered RE, which led to low DC%, more biofilm formation, and higher surface roughness. The improper light-curing of bulk-fill composites compromises their physicochemical and biological properties, which could lead to inferior clinical performance and reduced restorative treatments' longevity.

20.
J Dent ; 113: 103789, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34455017

RESUMEN

OBJECTIVE: Composites with remineralizing and antibacterial properties are favorable for caries inhibition. The objectives of this study were to develop a new bioactive nanocomposite with remineralizing and antibiofilm properties by incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and nano-calcium fluoride (nCaF2). METHODS: nCaF2 was produced via a spray-drying method and integrated at 15% mass fraction into composite. DMAHDM was added at 3% mass fraction. Mechanical properties and F and Ca ion releases were assessed. Colony-forming units (CFU), lactic acid and metabolic activity of biofilms on composites were performed. RESULTS: The new composites had flexural strengths of (95.28±6.32) MPa and (125.93±7.49) MPa, which were within the ISO recommendations. Biofilm CFU were reduced by 3-4 log (p<0.05). The composites achieved high F releases of (0.89±0.01) mmol/L and (0.44±0.01) mmol/L, and Ca releases of (1.46±0.05) mmol/L and (0.54±0.005) mmol/L. CONCLUSIONS: New nanocomposites were developed with good mechanical properties, potent antibacterial activity against salivary biofilms, and high F and Ca ion releases with potential for remineralization. CLINICAL SIGNIFICANCE: Novel nanocomposites using nCaF2 and DMAHDM were developed with potent antibacterial and remineralizing effects and high F and Ca ion releases. They are promising to inhibit recurrent caries, promote remineralization, and possess long-term sustainability.


Asunto(s)
Fluoruros , Nanocompuestos , Antibacterianos/farmacología , Biopelículas , Fluoruro de Calcio , Fosfatos de Calcio/farmacología , Fluoruros/farmacología , Metacrilatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA