Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell Endocrinol ; 590: 112254, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677465

RESUMEN

During insulin resistance, the heart undergoes a metabolic shift in which fatty acids (FA) account for roughly about 99% of the ATP production. This metabolic shift is indicative of impaired glucose metabolism. A shift in FA metabolism with impaired glucose tolerance can increase reactive oxygen species (ROS), lipotoxicity, and mitochondrial dysfunction, ultimately leading to cardiomyopathy. Thyroid hormones (TH) may improve the glucose intolerance by increasing glucose reabsorption and metabolism in peripheral tissues, but little is known on its effects on cardiac tissue during insulin resistance. In the present study, insulin resistant Otsuka Long Evans Tokushima Fatty (OLETF) rats were used to assess the effects of exogenous thyroxine (T4) on glucose metabolism in cardiac tissue. Rats were assigned to four groups: (1) lean, Long Evans Tokushima Otsuka (LETO; n=6), (2) LETO + T4 (8 µg/100 g BM/d × 5 wks; n = 7), (3) untreated OLETF (n = 6), and (4) OLETF + T4 (8 µg/100 g BM/d × 5 wks; n = 7). T4 increased GLUT4 gene expression by 85% in OLETF and increased GLUT4 protein translocation to the membrane by 294%. Additionally, T4 increased p-AS160 by 285%, phosphofructokinase-1 (PFK-1) mRNA, the rate limiting step in glycolysis, by 98% and hexokinase II by 64% in OLETF. T4 decreased both CPT2 mRNA and protein expression in OLETF. The results suggest that exogenous T4 has the potential to increase glucose uptake and metabolism while simultaneously reducing fatty acid transport in the heart of insulin resistant rats. Thus, L-thyroxine may have therapeutic value to help correct the impaired substrate metabolism associated with diabetic cardiomyopathy.


Asunto(s)
Transportador de Glucosa de Tipo 4 , Resistencia a la Insulina , Miocardio , Tiroxina , Animales , Masculino , Ratas , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Transportador de Glucosa de Tipo 4/genética , Miocardio/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas Endogámicas OLETF , Tiroxina/administración & dosificación
2.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R100-R109, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37899754

RESUMEN

Cannabidiol (CBD) use has grown exponentially more popular in the last two decades, particularly among older adults (>55 yr), though very little is known about the effects of CBD use during age-associated metabolic dysfunction. In addition, synthetic analogues of CBD have generated great interest because they can offer a chemically pure product, which is free of plant-associated contaminants. To assess the effects of a synthetic analogue of CBD (H4CBD) on advanced metabolic dysfunction, a cohort of 41-wk-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats were administered 200 mg H4CBD/kg by oral gavage for 4 wk. Animals were fed ad libitum and monitored alongside vehicle-treated OLETF and Long-Evans Tokushima Otsuka (LETO) rats, the lean-strain controls. An oral glucose-tolerance test (oGTT) was performed after 4 wk of treatment. When compared with vehicle-treated, OLETF rats, H4CBD decreased body mass (BM) by 15%, which was attributed to a significant loss in abdominal fat. H4CBD reduced glucose response (AUCglucose) by 29% (P < 0.001) and insulin resistance index (IRI) by 25% (P < 0.05) compared with OLETF rats. However, H4CBD did not statically reduce fasting blood glucose or plasma insulin, despite compensatory increases in skeletal muscle native insulin receptor (IR) protein expression (54%; P < 0.05). H4CBD reduced circulating adiponectin (40%; P < 0.05) and leptin (47%; P < 0.05) and increased ghrelin (75%; P < 0.01) compared with OLETF. Taken together, a chronic, high dose of H4CBD may improve glucose response, independent of static changes in insulin signaling, and these effects are likely a benefit of the profound loss of visceral adiposity.NEW & NOTEWORTHY Cannabis product use has grown in the last two decades despite the lack of research on Cannabidiol (CBD)-mediated effects on metabolism. Here, we provide seminal data on CBD effects during age-associated metabolic dysfunction. We gave 41-wk-old OLETF rats 200 mg H4CBD/kg by mouth for 4 wk and noted a high dose of H4CBD may improve glucose response, independent of static changes in insulin signaling, and these effects are likely a benefit of loss of visceral adiposity.


Asunto(s)
Cannabidiol , Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Humanos , Ratas , Animales , Anciano , Ratas Endogámicas OLETF , Síndrome Metabólico/tratamiento farmacológico , Insulina , Glucosa , Cannabidiol/farmacología , Ratas Long-Evans , Diabetes Mellitus Tipo 2/metabolismo , Glucemia/metabolismo
3.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36142809

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) affects up to 20% of the world's population. Overactivation of the angiotensin receptor type 1 (AT1) contributes to metabolic dysfunction and increased oxidant production, which are associated with NAFLD and impaired hepatic lipid metabolism. Nuclear factor erythroid-2-related factor 2 (Nrf2) regulates the expression of antioxidant phase II genes by binding to the antioxidant response element (ARE); however, the mechanisms by which AT1 contributes to this pathway during the progression of NAFLD remain unresolved. To investigate hepatic Nrf2 response to a hyperglycemic challenge, we studied three groups of rats (male, 10-weeks-old): (1) untreated, lean Long Evans Tokushima Otsuka (LETO), (2) untreated, obese Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + angiotensin receptor blocker (OLETF + ARB; 10 mg olmesartan/kg/d × 6 weeks). Livers were collected after overnight fasting (T0; baseline), and 1 h and 2 h post-oral glucose load. At baseline, chronic AT1 blockade increased nuclear Nrf2 content, reduced expression of glutamate-cysteine ligase catalytic (GCLC) subunit, glutathione peroxidase 1 (GPx1), and superoxide dismutase 2 (SOD2), mitochondrial catalase activity, and hepatic 4-hydroxy-2-nonenal (4-HNE) content. The expression of hepatic interleukin-1 beta (IL-1ß) and collagen type IV, which are associated with liver fibrosis, were decreased with AT1 blockade. Glucose increased Nrf2 translocation in OLETF but was reduced in ARB, suggesting that glucose induces the need for antioxidant defense that is ameliorated with ARB. These results suggest that overactivation of AT1 promotes oxidant damage by suppressing Nrf2 and contributing to hepatic fibrosis associated with NAFLD development.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Antioxidantes/farmacología , Catalasa , Colágeno Tipo IV , Glucosa/metabolismo , Glutamato-Cisteína Ligasa , Insulina , Resistencia a la Insulina/fisiología , Interleucina-1beta , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/metabolismo , Oxidantes/farmacología , Ratas , Receptores de Angiotensina
4.
Mol Cell Endocrinol ; 555: 111729, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35921918

RESUMEN

Increased angiotensin II (Ang II) signaling contributes to insulin resistance and liver steatosis. In addition to ameliorating hypertension, angiotensin receptor blockers (ARBs) improve lipid metabolism and hepatic steatosis, which are impaired with metabolic syndrome (MetS). Chronic blockade of the Ang II receptor type 1 (AT1) increases plasma angiotensin 1-7 (Ang 1-7), which mediates mechanisms counterregulatory to AT1 signaling. Elevated plasma Ang 1-7 is associated with decreased plasma triacylglycerol (TAG), cholesterol, glucose, and insulin; however, the benefits of RAS modulation to prevent non-alcoholic fatty liver disease (NAFLD) are not fully investigated. To better address the relationships among chronic ARB treatment, plasma Ang 1-7, and hepatic steatosis, three groups of 10-week-old-rats were studied: (1) untreated lean Long Evans Tokushima Otsuka (LETO), (2) untreated Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/d × 6 weeks). Following overnight fasting, rats underwent an acute glucose load to better understand the dynamic metabolic responses during hepatic steatosis and early MetS. Tissues were collected at baseline (pre-load; T0) and 1 and 2 h post-glucose load. AT1 blockade increased plasma Ang 1-7 and decreased liver lipids, which was associated with decreased fatty acid transporter 5 (FATP5) and fatty acid synthase (FASN) expression. AT1 blockade decreased liver glucose and increased glucokinase (GCK) expression. These results demonstrate that during MetS, overactivation of AT1 promotes hepatic lipid deposition that is stimulated by an acute glucose load and lipogenesis genes, suggesting that the chronic hyperglycemia associated with MetS contributes to fatty liver pathologies via an AT1-mediated mechanism.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Síndrome Metabólico , Angiotensina I , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Expresión Génica , Glucosa , Insulina , Lipogénesis , Hígado , Obesidad , Fragmentos de Péptidos , Ratas , Ratas Endogámicas OLETF , Receptor de Angiotensina Tipo 1
5.
Physiol Rep ; 9(16): e14858, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34405550

RESUMEN

In order for the heart to maintain its continuous mechanical work and provide the systolic movement to uphold coronary blood flow, substantial synthesis of adenosine triphosphate (ATP) is required. Under normal conditions cardiac tissue utilizes roughly 70% fatty acids (FA), and 30% glucose for the production of ATP; however, during impaired metabolic conditions like insulin resistance and diabetes glucose metabolism is dysregulated and FA account for 99% of energy production. One of the major consequences of a shift in FA metabolism in cardiac tissue is an increase in reactive oxygen species (ROS) and lipotoxicity, which ultimately lead to mitochondrial dysfunction. Thyroid hormones (TH) have direct effects on cardiac function and glucose metabolism during impaired metabolic conditions suggesting that TH may improve glucose metabolism in an insulin resistant condition. None-classical TH signaling in the heart has shown to phosphorylate protein kinase B (Akt) and increase activity of phosphoinositide-3-kinase (PI3K), which are critical mediators in the insulin-stimulated glucose uptake pathway. Studies on peripheral tissues such as skeletal muscle and adipocytes have demonstrated TH treatment improved glucose intolerance in a diabetic model and increased insulin-regulated glucose transporter (GLUT4) mRNA levels. GLUT4 is a downstream target of thyroid response element (TRE), which demonstrates that THs regulate glucose via GLUT4. Elevated 3,5,3'-triiodothyronine (T3) increased glucose oxidation rate and decreased the glycolytic intermediate, fructose 6-phosphate (F6P) in cardiomyocytes, in addition to increasing mitochondrial biogenesis and pyruvate transport across the mitochondrial membrane. These findings along with a few other studies on T3 treatment in cardiac tissue suggest TH may improve glucose metabolism in an insulin resistant model and ameliorate the effects of diabetes and metabolic syndrome. This review highlights the potential benefits of exogenous TH on ameliorating metabolic dysfunction in the heart.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Miocitos Cardíacos/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA