Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Molecules ; 29(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274890

RESUMEN

The hairpin structure is a common and fundamental secondary structure in macromolecules. In this work, the process of the translocation of a model polymer chain with a hairpin structure is studied using Langevin dynamics simulations. The simulation results show that the dynamics of hairpin polymer translocation through a nanopore are influenced by the hairpin structure. Hairpin polymers can be classified into three categories, namely, linear-like, unsteady hairpin, and steady hairpin, according to the interaction with the stem structure. The translocation behavior of linear-like polymers is similar to that of a linear polymer chain. The time taken for the translocation of unsteady hairpin polymers is longer than that for a linear chain because it takes a long time to unfold the hairpin structure, and this time increases with stem interaction and decreases with the driving force. The translocation of steady hairpin polymers is distinct, especially under a weak driving force; the difficulty of unfolding the hairpin structure leads to a low translocation probability and a short translocation time. The translocation behavior of hairpin polymers can be explained by the theory of the free-energy landscape.

2.
Anal Chem ; 96(35): 14099-14107, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39161057

RESUMEN

Exosomes are increasingly being regarded as emerging and promising biomarkers for cancer screening, diagnosis, and therapy. The downstream molecular analyses of exosomes were greatly affected by the isolation efficiency from biosamples. Among the current exosome isolation strategies, affinity nanomaterials performed comparably better with selectivity and specificity. However, these techniques did not take the structure and size of exosomes into account, which may lead to a loss of isolation efficiency. In this article, a framework nucleic acid was employed to prepare a well-designed nanosized bead Fe3O4@pGMA@DNA TET@Ti4+ for enrichment of exosomes. The abundant phosphate groups in the framework nucleic acid provide binding sites to immobilize Ti4+, and its rigid three-dimensional skeleton makes them act as roadblocks to barricade exosomes and provide affinity interactions on a three-dimensional scale, resulting in the improvement of isolation efficiency. The model exosomes can be effectively isolated with 92% recovery in 5 min. From 100 µL of HeLa cell culture supernatant, 34 proteins out of the top 100 commonly identified exosomal proteins were identified from the isolated exosomes by the novel beads, which is obviously more than that by TiO2 (19 proteins), indicating higher isolation efficiency and exosome purity by Fe3O4@pGMA@DNA TET@Ti4+ beads. The nanobeads were finally applied for comparing exosomal proteomics analysis from real clinical serum samples. Twenty-five upregulated and 10 downregulated proteins were identified in the lung cancer patients group compared to the health donors group, indicating that the novel nanobeads have great potential in isolation of exosomes for exosomal proteomics analysis in cancer screening and diagnosis.


Asunto(s)
Exosomas , Proteómica , Exosomas/química , Humanos , Proteómica/métodos , Células HeLa , Titanio/química , Nanopartículas de Magnetita/química , Ácidos Nucleicos/aislamiento & purificación , Ácidos Nucleicos/química , Ácidos Nucleicos/análisis
3.
Anticancer Drugs ; 35(9): 806-816, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39011652

RESUMEN

Chemoresistance largely hampers the clinical use of chemodrugs for cancer patients, combination or sequential drug treatment regimens have been designed to minimize chemotoxicity and resensitize chemoresistance. In this work, the cytotoxic effect of cisplatin was found to be enhanced by palbociclib pretreatment in HeLa cells. With the integration of liquid chromatography-mass spectrometry-based proteomic and N-glycoproteomic workflow, we found that palbociclib alone mainly enhanced the N-glycosylation alterations in HeLa cells, while cisplatin majorly increased the different expression proteins related to apoptosis pathways. As a result, the sequential use of two drugs induced a higher expression level of apoptosis proteins BAX and BAK. Those altered N-glycoproteins induced by palbociclib were implicated in pathways that were closely associated with cell membrane modification and drug sensitivity. Specifically, the top four frequently glycosylated proteins FOLR1, L1CAM, CD63, and LAMP1 were all associated with drug resistance or drug sensitivity. It is suspected that palbociclib-induced N-glycosylation on the membrane protein allowed the HeLa cell to become more vulnerable to cisplatin treatment. Our study provides new insights into the mechanisms underlying the sequential use of target drugs and chemotherapy drugs, meanwhile suggesting a high-efficiency approach that involves proteomic and N-glycoproteomic to facilitate drug discovery.


Asunto(s)
Cisplatino , Sinergismo Farmacológico , Piperazinas , Proteómica , Piridinas , Humanos , Cisplatino/farmacología , Cisplatino/administración & dosificación , Piridinas/farmacología , Piperazinas/farmacología , Piperazinas/administración & dosificación , Proteómica/métodos , Células HeLa , Glicosilación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Glicoproteínas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología
4.
iScience ; 27(7): 110243, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39006478

RESUMEN

Many clinical studies indicate a significant decrease of peripheral T cells in Parkinson's disease (PD). There is currently no mechanistic explanation for this important observation. Here, we found that small extracellular vesicles (sEVs) derived from in vitro and in vivo PD models suppressed IL-4 and INF-γ production from both purified CD4+ and CD8+ T cells and inhibited their activation and proliferation. Furthermore, neuronal-enriched sEVs (NEEVs) isolated from plasma of A53T-syn mice and culture media of human dopaminergic neurons carrying A53T-syn mutation also suppressed Th1 and Th2 differentiation of naive CD4+ T cells. Mechanistically, the suppressed phenotype induced by NEEVs was associated with altered programmed death ligand 1 (PD-L1) level in T cells. Blocking PD-L1 with an anti-PD-L1 antibody or a small molecule inhibitor BMS-1166 reversed T cell suppression. Our study provides the basis for exploring peripheral T cells in PD pathogenesis and as biomarkers or therapeutic targets for the disease.

6.
Proc Natl Acad Sci U S A ; 121(28): e2322972121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968116

RESUMEN

Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.


Asunto(s)
Reparación del ADN , Ubiquitina-Proteína Ligasas , Humanos , Roturas del ADN de Doble Cadena , Histonas/metabolismo , Histonas/genética , Poliubiquitina/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
7.
Natl Sci Rev ; 11(7): nwae206, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39071099

RESUMEN

Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating viral infectivity. The reduced infectivity is recovered in the presence of heparin sulfate, which targets the 'N354 pocket' to ease restrictions of conformational transition resulting in a 'RBD-up' state, thereby conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell-cell fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides selective advantage in humans through multiple mechanisms.

8.
J Neuroimmunol ; 394: 578403, 2024 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047317

RESUMEN

This study investigated the impact of two-hit inflammation on postoperative cognitive dysfunction (POCD) in mice and the role of macrophage-derived exosomes in regulating this process. Mice models were used to mimic the state of two-hit inflammation, and cognitive function was assessed through behavioral experiments. Proinflammatory cytokine expression levels and blood-brain barrier (BBB)-associated functional proteins were measured using ELISA and Western blot, respectively. An in vitro macrophage inflammation two-hit model was created, and the role of exosomes was examined using the previously mentioned assays. Additionally, exosomes were injected into mice to further understand their impact in the two-hit inflammation model. Mice exposed to two-hit inflammation experienced impaired cognitive function, increased BBB permeability, and elevated levels of proinflammatory cytokines. Macrophages subjected to two-hit inflammation released higher levels of proinflammatory cytokines compared to the control group and other treatment groups. Treatment with an exosome inhibitor GW4869 effectively reduced the expression levels of proinflammatory cytokines in macrophages exposed to two-hit inflammation. Moreover, injection of macrophage-released exosomes into healthy mice induced inflammation, hippocampal damage, and cognitive disorders, which were mitigated by treatment with GW4869. In mice with two-hit inflammation, macrophage-released exosomes worsened cognitive disorders by promoting inflammation in the peripheral blood and central nervous system. However, treatment with GW4869 protected cognitive function by suppressing exosome release. These findings highlight the importance of two-hit inflammation in POCD and emphasize the critical role of exosomes as regulatory factors. This research provides valuable insights into the pathogenesis of POCD and potential intervention strategies.


Asunto(s)
Exosomas , Inflamación , Macrófagos , Ratones Endogámicos C57BL , Complicaciones Cognitivas Postoperatorias , Animales , Exosomas/metabolismo , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Complicaciones Cognitivas Postoperatorias/etiología , Complicaciones Cognitivas Postoperatorias/metabolismo , Masculino , Inflamación/metabolismo , Compuestos de Bencilideno/farmacología , Citocinas/metabolismo , Compuestos de Anilina/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo
9.
Food Chem ; 460(Pt 1): 140508, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047494

RESUMEN

This study aimed to clarify how microclimate diversity altered volatilomics in Cabernet Sauvignon grapes and wines. Four row-oriented vineyards were selected, and metabolites of grapes and wines were determined from separate canopy sides. Results showed that shaded sides received 59% of the solar radiation and experienced 55% of the high-temperature days compared to the exposed sides on average. Grape primary metabolites were slightly affected by the canopy side. Herbaceous aromas were consistently more abundant in grapes and wines from shaded clusters. Heat-stressed canopy sides accelerated terpenoid loss and increased norisoprenoid levels in grapes, while ß-damascenone in north-side wines was 13%-32% higher than that in south-side wines of the east-west vineyard. The northeast-southwest vineyard showed the most notable variation in taste and aroma sensory scores, with four parameters significantly different. There were 32 aroma series identified in wines, and banana, pineapple, and strawberry odors were highly correlated with aroma sensory score.


Asunto(s)
Frutas , Odorantes , Gusto , Vitis , Compuestos Orgánicos Volátiles , Vino , Vitis/química , Vitis/metabolismo , Vino/análisis , Odorantes/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Frutas/química , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Humanos , Granjas , Aromatizantes/química , Aromatizantes/análisis , Femenino , Masculino
10.
Cell Rep ; 43(7): 114471, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38996069

RESUMEN

Low-oxygen conditions (hypoxia) have been associated primarily with cell-cycle arrest in dividing cells. Macrophages are typically quiescent in G0 but can proliferate in response to tissue signals. Here we show that hypoxia (1% oxygen tension) results in reversible entry into the cell cycle in macrophages. Cell cycle progression is largely limited to G0-G1/S phase transition with little progression to G2/M. This cell cycle transitioning is triggered by an HIF2α-directed transcriptional program. The response is accompanied by increased expression of cell-cycle-associated proteins, including CDK1, which is known to phosphorylate SAMHD1 at T592 and thereby regulate antiviral activity. Prolyl hydroxylase (PHD) inhibitors are able to recapitulate HIF2α-dependent cell cycle entry in macrophages. Finally, tumor-associated macrophages (TAMs) in lung cancers exhibit transcriptomic profiles representing responses to low oxygen and cell cycle progression at the single-cell level. These findings have implications for inflammation and tumor progression/metastasis where low-oxygen environments are common.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ciclo Celular , Hipoxia de la Célula , Macrófagos , Macrófagos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Macrófagos Asociados a Tumores/metabolismo
11.
Sci Total Environ ; 943: 173879, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857798

RESUMEN

Mercury (Hg) is a globally distributed heavy metal. Here, we study Hg concentration and isotopic composition to understand the status of Hg pollution and its sources in Pakistan's paddy soil. The collected paddy soils (n = 500) across the country have an average THg concentration of 22.30 ± 21.74 ng/g. This low mean concentration suggests Hg pollution in Pakistan was not as severe as previously thought. Meanwhile, samples collected near brick kilns and industrial areas were significantly higher in THg than others, suggesting the influence of Hg emitted from point sources in certain areas. Soil physicochemical properties showed typical characteristic of mineral soils due to the study area's arid to semi-arid climate. Hg stable isotopes analysis, depicted mean Δ199Hg of -0.05 ± 0.12‰ and mean δ202Hg -0.45 ± 0.35‰, respectively, for contaminated sites, depicting Hg was primarily sourced from coal combustion by local anthropogenic sources. While uncontaminated sites show mean Δ199Hg of 0.15 ± 0.08‰, mean Δ200Hg of 0.06 ± 0.07‰ and mean δ202Hg of -0.32 ± 0.28‰, implying long-range transboundry Hg transport through wet Hg(II) deposition as a dominant Hg source. This study fills a significant knowledge gap regarding the Hg pollution status in Pakistan and suggests that the Hg risk in Pakistan paddies is generally low.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Contaminantes del Suelo , Suelo , Mercurio/análisis , Pakistán , Contaminantes del Suelo/análisis , Suelo/química , Agricultura , Oryza/química
12.
Clin Exp Med ; 24(1): 129, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884870

RESUMEN

Chronic inflammation is pivotal in the pathogenesis of hepatocellular carcinoma (HCC). Histamine is a biologically active substance that amplifies the inflammatory and immune response and serves as a neurotransmitter. However, knowledge of histamine's role in HCC and its effects on immunotherapy remains lacking. We focused on histamine-related genes to investigate their potential role in HCC. The RNA-seq data and clinical information regarding HCC were obtained from The Cancer Genome Atlas (TCGA). After identifying the differentially expressed genes, we constructed a signature using the univariate Cox proportional hazard regression and least absolute shrinkage and selection operator (LASSO) analyses. The signature's predictive performance was evaluated using a receiver operating characteristic curve (ROC) analysis. Furthermore, drug sensitivity, immunotherapy effects, and enrichment analyses were conducted. Histamine-related gene expression in HCC was confirmed using quantitative real-time polymerase chain reaction (qRT-PCR). A histamine-related gene prognostic signature (HRGPS) was developed in TCGA. Time-dependent ROC and Kaplan-Meier survival analyses demonstrated the signature's strong predictive power. Importantly, patients in high-risk groups exhibited a higher frequency of TP53 mutations, elevated immune checkpoint-related gene expression, and increased infiltration of immunosuppressive cells-indicating a potentially favorable response to immunotherapy. In addition, drug sensitivity analysis revealed that the signature could effectively predict chemotherapy efficacy and sensitivity. qRT-PCR results validated histamine-related gene overexpression in HCC. Our findings demonstrate that inhibiting histamine-related genes and signaling pathways can impact the therapeutic effect of anti-PD-1/PD-L1. The precise predictive ability of our signature in determining the response to different therapeutic options highlights its potential clinical significance.


Asunto(s)
Carcinoma Hepatocelular , Histamina , Inmunoterapia , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Histamina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Masculino , Regulación Neoplásica de la Expresión Génica , Pronóstico , Femenino , Persona de Mediana Edad , Estimación de Kaplan-Meier , Perfilación de la Expresión Génica , Curva ROC
13.
Am Surg ; : 31348241260274, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848748

RESUMEN

PURPOSE: The Boston naming test (BNT), as a simple, fast, and easily administered neuropsychological test, was demonstrated to be useful in detecting language function. In this study, BNT was investigated whether it could be a screening tool for early postoperative cognitive dysfunction (POCD). METHODS: This prospective observational cohort study included 132 major noncardiac surgery patients and 81 nonsurgical controls. All participants underwent a mini-mental state examination (MMSE) and BNT 1 day before and 7 days after surgery. Early POCD was assessed by reliable change index and control group results. RESULTS: Seven days after surgery, among 132 patients, POCD was detected in 30 (22.7%) patients (95% CI, 15.5%-30.0%) based on MMSE, and 45 (34.1%) patients (95% CI, 26.3%-41.9%) were found with postoperative language function decline based on BNT and MMSE. Agreement between the BNT spontaneous naming and MMSE total scoring was moderate (Kappa .523), and the sensitivity of BNT spontaneous naming for detecting early POCD was .767. Further analysis showed that areas under receiver operating characteristics curves (AUC) did not show statistically significant differences when BNT spontaneous naming (AUC .862) was compared with MMSE language functional subtests (AUC .889), or non-language functional subtests (AUC .933). CONCLUSION: This study indicates the feasibility of implementing the BNT spontaneous naming test to screen early POCD in elderly patients after major noncardiac surgery.

14.
Environ Sci Technol ; 58(25): 11053-11062, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38867369

RESUMEN

Gaseous elemental mercury [Hg(0)] emissions from soils constitute a large fraction of global total Hg(0) emissions. Existing studies do not distinguish biotic- and abiotic-mediated emissions and focus only on photoreduction mediated emissions, resulting in an underestimation of soil Hg(0) emissions into the atmosphere. In this study, directional mercury (Hg) reduction pathways in paddy soils were identified using Hg isotopes. Results showed significantly different isotopic compositions of Hg(0) between those produced from photoreduction (δ202Hg = -0.80 ± 0.67‰, Δ199Hg = -0.38 ± 0.18‰), microbial reduction (δ202Hg = -2.18 ± 0.25‰, Δ199Hg = 0.29 ± 0.38‰), and abiotic dark reduction (δ202Hg = -2.31 ± 0.25‰, Δ199Hg = 0.50 ± 0.22‰). Hg(0) exchange fluxes between the atmosphere and the paddy soils were dominated by emissions, with the average flux ranging from 2.2 ± 5.7 to 16.8 ± 21.7 ng m-2 h-1 during different sampling periods. Using an isotopic signature-based ternary mixing model, we revealed that photoreduction is the most important contributor to Hg(0) emissions from paddy soils. Albeit lower, microbial and abiotic dark reduction contributed up to 36 ± 22 and 25 ± 15%, respectively, to Hg(0) emissions on the 110th day. These novel findings can help improve future estimation of soil Hg(0) emissions from rice paddy ecosystems, which involve complex biotic-, abiotic-, and photoreduction processes.


Asunto(s)
Atmósfera , Ecosistema , Isótopos de Mercurio , Mercurio , Oryza , Suelo , Oryza/química , Atmósfera/química , Suelo/química , Monitoreo del Ambiente , Contaminantes Atmosféricos , Contaminantes del Suelo
15.
Soft Matter ; 20(26): 5113-5121, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38894642

RESUMEN

The critical adsorption of end-grafted active polymer chains on an attractive surface is studied using Langevin dynamics simulations. The active polymers are composed of an active Langevin particle located at the head and a sequential passive chain. Results show that the active force exerted by the active head pulls the active polymer away from the surface. Consequently, the adsorption of the active polymer is hindered, and the critical surface attraction strength, , increases proportionally to the square of the active force, Fa2. The increase in depends on the rotation behavior of the active head. Specifically, for the restricted rotating active polymer (RRAP) chain with a longer rotational persistence time as the rotation of the active head is restricted, increases significantly with Fa. On the other hand, for the freely rotating active polymer (FRAP) chain with a shorter rotational persistence time as the rotation of the active head is free, shows a weak dependence on Fa. The results show that the active force has a significantly stronger pulling effect on the RRAP chain than on the FRAP chain. Furthermore, knotted conformations are observed for the adsorbed RRAP chain at large Fa. These knots reduce the adsorption of monomers near the grafted end. In contrast, no knotted conformations are observed for the FRAP chains due to the comparatively weaker pulling effect of the active force.

16.
Nat Food ; 5(6): 491-498, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789566

RESUMEN

Crop diversification is increasingly recognized as a strategy to stabilize national food production, yet the benefits of this approach may vary across nations due to the scale dependence of crop diversity and stability. Here we use crop production data from 131 nations from 1961 to 2020 to explore the spatial scale dependence of the crop diversity-stability relationship. Drawing on ecological theory and complementary analytical approaches, we find that as the total national harvested area increases, yield stability increases. Crop diversity stabilizes national yield stability, as does an increase in the number of farms, but these stabilizing effects are weaker in smaller countries. Our findings suggest that enhancing crop diversity at the national level may not provide a de facto universal strategy for increasing yield stability across all countries-with implications for national strategies promoting crop diversification to protect against food system shocks.


Asunto(s)
Productos Agrícolas , Abastecimiento de Alimentos , Producción de Cultivos/métodos , Humanos , Agricultura , Biodiversidad
17.
BMC Cancer ; 24(1): 630, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783240

RESUMEN

BACKGROUND: Tumor morphology, immune function, inflammatory levels, and nutritional status play critical roles in the progression of intrahepatic cholangiocarcinoma (ICC). This multicenter study aimed to investigate the association between markers related to tumor morphology, immune function, inflammatory levels, and nutritional status with the prognosis of ICC patients. Additionally, a novel tumor morphology immune inflammatory nutritional score (TIIN score), integrating these factors was constructed. METHODS: A retrospective analysis was performed on 418 patients who underwent radical surgical resection and had postoperative pathological confirmation of ICC between January 2016 and January 2020 at three medical centers. The cohort was divided into a training set (n = 272) and a validation set (n = 146). The prognostic significance of 16 relevant markers was assessed, and the TIIN score was derived using LASSO regression. Subsequently, the TIIN-nomogram models for OS and RFS were developed based on the TIIN score and the results of multivariate analysis. The predictive performance of the TIIN-nomogram models was evaluated using ROC survival curves, calibration curves, and clinical decision curve analysis (DCA). RESULTS: The TIIN score, derived from albumin-to-alkaline phosphatase ratio (AAPR), albumin-globulin ratio (AGR), monocyte-to-lymphocyte ratio (MLR), and tumor burden score (TBS), effectively categorized patients into high-risk and low-risk groups using the optimal cutoff value. Compared to individual metrics, the TIIN score demonstrated superior predictive value for both OS and RFS. Furthermore, the TIIN score exhibited strong associations with clinical indicators including obstructive jaundice, CEA, CA19-9, Child-pugh grade, perineural invasion, and 8th edition AJCC N stage. Univariate and multivariate analysis confirmed the TIIN score as an independent risk factor for postoperative OS and RFS in ICC patients (p < 0.05). Notably, the TIIN-nomogram models for OS and RFS, constructed based on the multivariate analysis and incorporating the TIIN score, demonstrated excellent predictive ability for postoperative survival in ICC patients. CONCLUSION: The development and validation of the TIIN score, a comprehensive composite index incorporating tumor morphology, immune function, inflammatory level, and nutritional status, significantly contribute to the prognostic assessment of ICC patients. Furthermore, the successful application of the TIIN-nomogram prediction model underscores its potential as a valuable tool in guiding individualized treatment strategies for ICC patients. These findings emphasize the importance of personalized approaches in improving the clinical management and outcomes of ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Estado Nutricional , Humanos , Colangiocarcinoma/cirugía , Colangiocarcinoma/patología , Masculino , Femenino , Estudios Retrospectivos , Neoplasias de los Conductos Biliares/cirugía , Neoplasias de los Conductos Biliares/patología , Persona de Mediana Edad , Pronóstico , Anciano , Nomogramas , Inflamación , Biomarcadores de Tumor , Fosfatasa Alcalina/sangre , Carga Tumoral , Evaluación Nutricional , Albúmina Sérica/análisis , Albúmina Sérica/metabolismo , Curva ROC , Monocitos/patología
18.
J Chem Phys ; 160(18)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38716854

RESUMEN

The translocation of polymers through nanopores is a complex process influenced by various factors. In this study, the translocation behavior of a two-dimensional active polymer chain, comprised of a head active Brownian particle (ABP) and a tail passive polymer chain, through a nanopore is studied using Langevin dynamics simulations. Results show that the effect of the self-propulsion force of the ABP on the translocation differs significantly from the driving force inside the pore for traditional polymer translocations. Specifically, the translocation time τ initially increases with increasing the magnitude fs of the self-propulsion force and then decreases with a further increase in fs. A small fs lowers the potential barrier for the translocation and thus promotes slow translocations, whereas a large fs directly pulls the polymer chain through the nanopore following the scaling relation τ ∝ fs-1. Moreover, two asymptotic scaling relations between τ and polymer length N, τ ∝ Nα, are found, with the exponent α of about 2.5 for small fs or long N and the exponent α of about 1.4 for short active polymers with large fs. We discover that the slow rotation of the ABP accelerates the translocation process.

19.
Sci Total Environ ; 930: 172832, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38688367

RESUMEN

Inorganic mercury (HgII) can be transformed into neurotoxic methylmercury (MeHg) by microorganisms in paddy soils, and the subsequent accumulation in rice grains poses an exposure risk for human health. Warming as an important manifestation of climate change, changes the composition and structure of microbial communities, and regulates the biogeochemical cycles of Hg in natural environments. However, the response of specific HgII methylation/demethylation to the changes in microbial communities caused by warming remain unclear. Here, nationwide sampling of rice paddy soils and a temperature-adjusted incubation experiment coupled with isotope labeling technique (202HgII and Me198Hg) were conducted to investigate the effects of temperature on HgII methylation, MeHg demethylation, and microbial mechanisms in paddy soils along Hg gradients. We showed that increasing temperature significantly inhibited HgII methylation but promoted MeHg demethylation. The reduction in the relative abundance of Hg-methylating microorganisms and increase in the relative abundance of MeHg-demethylating microorganisms are the likely reasons. Consequently, the net Hg methylation production potential in rice paddy soils was largely inhibited under the increasing temperature. Collectively, our findings offer insights into the decrease in net MeHg production potential associated with increasing temperature and highlight the need for further evaluation of climate change for its potential effect on Hg transformation in Hg-sensitive ecosystems.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Mercurio/metabolismo , Mercurio/análisis , Metilación , Suelo/química , Microbiología del Suelo , Cambio Climático , Desmetilación , Monitoreo del Ambiente
20.
Mol Autism ; 15(1): 14, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570876

RESUMEN

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Asunto(s)
Trastorno Autístico , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA