Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38930679

RESUMEN

Magnetic abrasive finishing (MAF) is an efficient finishing process method using magnetic abrasive particles (MAPs) as finishing tools. In this study, two iron-based alumina magnetic abrasives with different particle size ranges were synthesized by the plasma molten metal powder and powder jetting method. Characterization of the magnetic abrasives in terms of microscopic morphology, phase composition, magnetic permeability, particle size distribution, and abrasive ability shows that the magnetic abrasives are spherical in shape, that the hard abrasives are combined in the surface layer of the iron matrix and remain sharp, and that the hard abrasives combined in the surface layer of the magnetic abrasives with smaller particle sizes are sparser than those of the magnetic abrasives with larger particle sizes. The magnetic abrasives are composed of α-Fe and Al2O3; the magnetic permeability of the magnetic abrasives having smaller particle sizes is slightly higher than that of the magnetic abrasives having larger particle sizes; the two magnetic abrasives are distributed in a range of different particle sizes; the magnetic abrasives have different magnetic permeabilities, which are higher than those of the larger ones; both magnetic abrasives are distributed in the range of smaller particle sizes; and AZ31B alloy can obtain smaller surface roughness of the workpiece after the grinding process of the magnetic abrasives with a small particle size.

2.
Micromachines (Basel) ; 14(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37763884

RESUMEN

Due to the excellent properties of carbon fiber-reinforced polymers (CFRPs), such as high strength and strong corrosion resistance, the traditional water-jet-guided laser (WJGL) technology has problems with fiber pull-out and has a small cutting depth when processing CFRPs. Therefore, in this study, we used high-power water-jet-guided laser (HPWJGL) technology to perform groove processing experiments on CFRPs. The effects of four key process parameters, high laser power, pulse frequency, feed rate, and water-jet pressure, on the cutting depth were investigated by a single-factor experiment. The formation mechanism of groove cross-section morphology and the processing advantages of high-power water-jet-guided lasers were analyzed. On this basis, the mathematical prediction model of cutting depth was established by using the response surface method (RSM), and the optimal combination of process parameters was obtained. The mathematical prediction model was verified by experiments, and the error was only 1.84%, indicating that the model had a high reference value. This study provides a reference for the precision machining of HPWJGL technology.

3.
Materials (Basel) ; 16(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37109858

RESUMEN

The internal wall of cardiovascular stent tubing produced by a drawing process has defects such as pits and bumps, making the surface rough and unusable. In this research, the challenge of finishing the inner wall of a super-slim cardiovascular stent tube was solved by magnetic abrasive finishing. Firstly, a spherical CBN magnetic abrasive was prepared by a new method, plasma molten metal powders bonding with hard abrasives; then, a magnetic abrasive finishing device was developed to remove the defect layer from the inner wall of ultrafine long cardiovascular stent tubing; finally, response surface tests were performed and parameters were optimized. The results show that the prepared spherical CBN magnetic abrasive has a perfect spherical appearance; the sharp cutting edges cover the surface layer of the iron matrix; the developed magnetic abrasive finishing device for a ultrafine long cardiovascular stent tube meets the processing requirements; the process parameters are optimized by the established regression model; and the inner wall roughness (Ra) of the nickel-titanium alloy cardiovascular stents tube is reduced from 0.356 µm to 0.083 µm, with an error of 4.3% from the predicted value. Magnetic abrasive finishing effectively removed the inner wall defect layer and reduced the roughness, and this solution provides a reference for polishing the inner wall of ultrafine long tubes.

4.
Micromachines (Basel) ; 14(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985028

RESUMEN

In this investigation, spherical Al2O3 magnetic abrasive particles (MAPs) were used to polish the inner surface of ultra-fine long cobalt-chromium alloy cardiovascular stent tubes. The magnetic abrasives were prepared by combining plasma molten metal powder and hard abrasives, and the magnetic abrasives prepared by this new method are characterized by high sphericity, narrow particle size distribution range, long life, and good economic value. Firstly, the spherical Al2O3 magnetic abrasives were prepared by the new method; secondly, the polishing machine for the inner surface of the ultra-fine long cardiovascular stent tubes was developed; finally, the influence laws of spindle speed, magnetic pole speed, MAP filling quantities, the magnetic pole gap on the surface roughness (Ra), and the removal thickness (RT) of tubes were investigated. The results showed that the prepared Al2O3 magnetic abrasives were spherical in shape, and their superficial layer was tightly bound with Al2O3 hard abrasives with sharp cutting; the use of spherical Al2O3 magnetic abrasives could achieve the polishing of the inner surface of ultra-fine cobalt-chromium alloy cardiovascular bracket tubes, and after processing, the inner surface roughness (Ra) of the tubes decreased from 0.337 µm to 0.09 µm and had an RT of 5.106 µm.

5.
Micromachines (Basel) ; 14(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36837934

RESUMEN

In this study, the water-jet-guided laser (WJGL) method was used to cut Inconel 718 alloy with high temperature resistance. The effect of critical parameters of the water-jet-guided laser machining method on the cutting depth was studied by a Taguchi orthogonal experiment. Furthermore, the mathematical prediction model of cutting depth was established by the response surface method (RSM). The validation experiments showed that the mathematical model had a high predictive ability for cutting depth. The optimal cutting depth was obtained by model prediction, and the error was 5.5% compared with the experimental results. Compared with the traditional dry laser cutting, the water conducting laser method reduced the thermal damage and improved the cutting quality. This study provides a reference for the precision machining of Inconel 718 with a water-jet-guided laser.

6.
Appl Opt ; 62(5): 1384-1391, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36821243

RESUMEN

To study the influence of laser process parameters on the surface properties of the coating, N i-A l 2 O 3 composite coatings on 304 stainless-steel sheets with laser-assisted pulsed electrodeposition was proposed in this paper. Laser single pulse energy and scanning speed were selected as research factors. Single-factor experiments were performed to investigate the effect of various factors on the surface morphology, particle mass fraction, microhardness, surface roughness, and corrosion resistance of the composite coating. The experimental results show that the surface properties of the composite coating first increase and then decrease with increasing laser single pulse energy. When the laser single pulse energy is 11 µJ, the minimum surface roughness value is 0.380 µm with a smooth and uniform coating surface and the best surface morphology. Moreover, as the scanning speed increases, the corrosion resistance of the composite coating initially increases and then decreases. The corrosion resistance of the composite coatings is best with a scanning speed of 1000 mm/s. When the scanning speed was 1500 mm/s, the particle mass fraction in the coating reached a maximum of 1.984%; meanwhile, the highest hardness of the composite coating was obtained with the value of 476.38 HV.

7.
Materials (Basel) ; 15(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36363020

RESUMEN

In order to improve the tribological properties of Ti-6Al-4V alloy and further broaden the application scope of titanium alloy materials in the industrial field, a preparation method of a waterjet-guided high-power laser processing surface microgroove was studied. In this paper, a multifocus coupling lens was innovatively designed to replace the spherical lens in the traditional waterjet-guided laser coupling device, which avoids the gas explosion phenomenon in the coupling of the high-power laser and waterjet, and realizes the high-quality coupling of the high-power laser and water beam fiber. Then, with the microgroove morphology as the response target, the single-factor test and response surface test of the water-guided laser processing microgroove were carried out. Based on the experimental results, an approximate mathematical model of the response surface between the process parameters and the microgroove topography target was constructed, and the quantitative relationship between the waterjet-guided laser processing parameters and the target response was studied. At the same time, the optimal combination of process parameters was obtained by multiobjective optimization, so as to effectively improve the microgroove morphology. This technology provides method guidance and a decision-making reference for subsequent waterjet-guided laser processing of titanium alloy surface functional microstructures.

8.
Micromachines (Basel) ; 13(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36144071

RESUMEN

In this paper, the surface roughness of SiC ceramics was investigated in laser-assisted machining (LAM) processes; machine learning was used to predict surface roughness and to optimize the process parameters, and therefore, to ultimately improve the surface quality of a workpiece and obtain excellent serviceability. First, single-factor turning experiments were carried out on SiC ceramics using LAM according to the material removal mechanism to investigate the variation trend of the effects of different laser powers, rotational speeds, feed rates, and cutting depths on surface roughness. Then, laser power, rotational speed, feed rate and cutting depth were selected as the four factors, and the surface roughness was used as the target value for the orthogonal experiments. The results of the single-factor experiments and the orthogonal experiments were combined to construct a prediction model based on the combination of the grey wolf optimization (GWO) algorithm and support vector regression (SVR). The coefficient of determination (R2) of the optimized prediction model reached 0.98676 with an average relative error of less than 2.624%. Finally, the GWO algorithm was used to optimize the global parameters of the prediction model again, and the optimal combination of process parameters was determined and verified by experiments. The actual minimum surface roughness (Ra) value was 0.418 µm, and the relative error was less than 1.91% as compared with the predicted value of the model. Therefore, the prediction model based on GWO-SVR can achieve accurate prediction of the surface roughness of SiC ceramics in LAM and can obtain the optimum surface roughness using parameter optimization.

9.
Appl Opt ; 61(8): 1994-2006, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35297892

RESUMEN

In this paper, the problems of decreasing coupling efficiency and energy distribution divergence of water beam fiber caused by static alignment deviation are studied. Based on the basic conditions of coupling between laser and water beam fiber, the mathematical model of coupling efficiency of water beam fiber is established, and the calculation equation of coupling efficiency is modified. The variation of coupling efficiency and energy distribution of water beam fiber under the influence of static alignment deviation is analyzed by numerical simulation, and the correctness of theoretical derivation and simulation model is verified by experiments. The results show that the lateral deviation changes the transmission path of laser in the water beam fiber to a large extent, and its influence on the energy distribution in the water beam fiber is greater than that of longitudinal deviation and angular deviation.

10.
Materials (Basel) ; 14(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499193

RESUMEN

Despite extensive research over the past three decades proving that laser-assisted machining (LAM) is effective for machining ceramic materials, which are affected by many machining parameters, there has been no systematic study of the effects of process parameters on surface quality in LAM ceramic materials. In this paper, the effects and optimization of laser power, spindle speed, feed rate, and cutting depth on surface roughness and work hardening of LAM Si3N4 were systematically studied, using grey relational analysis coupled with the Taguchi method. The results show that the combination of machining parameters determines the material removal mode at the material removal location, and then affects the surface quality. In ductile material removal mode, both the value of surface roughness and work hardening degree are smaller. Decreased surface roughness and work hardening degree can be obtained with smaller cutting depth and higher laser power.

11.
Micromachines (Basel) ; 11(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024180

RESUMEN

Aluminum alloys are widely used, but they are prone to contamination or damage under harsh working environments. In this paper, a self-cleaning superhydrophobic aluminum alloy surface with good corrosion resistance was successfully fabricated via the combination of sand peening and electrochemical oxidation, and it was subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphology, surface wettability, and corrosion resistance were investigated using a scanning electron microscope (SEM), an optical contact angle measurement, and an electrochemical workstation. The results show that binary rough structures and an FAS film with a low surface energy on the Al alloy surfaces confer good superhydrophobicity with a water contact angle of 167.5 ± 1.1° and a sliding angle of 2.5 ± 0.7°. Meanwhile, the potentiodynamic polarization curve shows that the corrosion potential has a positively shifted trend, and the corrosion current density decreases by three orders of magnitude compared with that of the original aluminum alloy sample. In addition, the chemical stability of the as-prepared superhydrophobic surface was evaluated by dripping test using solutions with different pH values for different immersion time. It indicates that the superhydrophobic surface could provide long-term corrosion protection for aluminum alloys. Consequently, the as-prepared superhydrophobic surface has excellent contamination resistance and self-cleaning efficacy, which are important for practical applications.

12.
Micromachines (Basel) ; 11(2)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033415

RESUMEN

There are high cutting temperatures, large tool wear, and poor tool life in conventional machining, owing to the superior strength and low thermal conductivity of titanium alloy. In this work, ultrasonic atomization assisted turning (UAAT) of Ti6Al4V was performed with a mixed water-soluble oil-based cutting fluid, dispersed into tiny droplets by the high frequency vibration of a piezoelectric crystal. Different cutting speeds and two machining environments, dry and ultrasonic atomization assisted machining, were considered in the investigation of tool life, tool wear morphology, surface roughness, and chip morphology. In comparison with dry machining, UAAT shows lower tool wear and longer tool life due to the advantages of cooling and lubrication. Furthermore, better surface roughness, smoother chip edges, and shorter tool-chip contact length were obtained with UAAT.

13.
Micromachines (Basel) ; 10(2)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781879

RESUMEN

A superhydrophobic surface with low adhesion and good wear resistance was fabricated on Ti6Al4V substrates via TiO2/Ni composite electrodeposition, and subsequently modified with a fluoroalkylsilane (FAS) film. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and optical contact angle measurements were used to characterize the surface morphologies, chemical compositions, and surface wettability. The superhydrophobicity of the as-prepared surface results from the fabrication of a hierarchical structure and the assembly of low-surface energy fluorinated components. The as-prepared surface had a water contact angle as high as 162.6° and a sliding angle close to 1.8°. Scratch and abrasion tests showed that the superhydrophobic coating provided a superior wear resistance and stable mechanical abrasion protection. In addition, the influence of processing conditions, such as working voltage, deposited time, pH value, and TiO2 concentration, was also investigated.

14.
Micromachines (Basel) ; 10(1)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669272

RESUMEN

Anti-adhesive Ni coatings with low wettability were successfully fabricated on Ti6Al4V substrates via an electro-brush plating method, and subsequently modified with a fluoroalkylsilane (FAS) film. The surface morphology, chemical compositions, and wettability of the as-prepared coatings were measured using scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrophotometry (FTIR), and contact angle measurements. The results showed that the surface of Ti6Al4V substrate was endowed with flower-like structures. Each flower-like cluster was constituted by a large number of Ni ions. After surface modification of FAS, the as-prepared Ti6Al4V surface had a water contact angle as high as 151.5°, a sliding angle close to 2.1°, and a solid surface energy as low as 0.97 mJ/m². Potentiodynamic polarization tests showed that the Ni coating could provide a stable corrosion protection. In addition, the effects of processing conditions, such as working voltage, relative velocity, electrolyte concentration, and processing time, were investigated. The mechanism of the adhesive resistance was proposed, and the low wettability of Ti6Al4V surfaces was explained by Cassie⁻Baxter model. As a result, it was necessary to reduce the fraction of the solid⁻liquid interface in order to achieve anti-adhesive surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA