Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
ACS Infect Dis ; 10(8): 2961-2977, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39066703

RESUMEN

The primary obstacles in the management of Enterococcus and Streptococcal infections are drug resistance and biofilm formation. Our study revealed that loratadine at a concentration of ≥25 µM exhibited significant inhibitory effects on biofilm formation in 167 clinical strains of Enterococcus faecalis and 15 clinical isolates of Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus pneumoniae. Additionally, the antibiofilm activity against E. faecalis and Streptococcal was demonstrated by several loratadine derivatives with altered side-chain carbamate moieties. This study investigated the antibacterial activity of the loratadine derivative Lo-7 against clinical strains of S. agalactiae and S. pyogenes, with minimum inhibitory concentrations ranging from 12.5 to 25 µM. The findings revealed that a low concentration of loratadine derivative Lo-7 (3.125 µM) significantly augmented the bactericidal efficacy of vancomycin against multidrug-resistant (MDR) S. agalactiae, both in vitro and in vivo. The loratadine derivative Lo-7, even at low concentrations, demonstrated significant efficacy in eliminating intracellular MDR S. agalactiae within macrophages, potentially indicating a unique advantage over vancomycin, linezolid, and loratadine. Mechanistically, exposure to the loratadine derivative Lo-7 resulted in membrane depolarization without affecting membrane permeability in S. agalactiae. The potential targeting of the SecG subunit of the SecYEG membrane-embedded channel by the loratadine derivative Lo-7 in S. agalactiae was identified through quantitative proteomics, a drug affinity responsive target stability assay, and molecular docking.


Asunto(s)
Antibacterianos , Biopelículas , Loratadina , Pruebas de Sensibilidad Microbiana , Infecciones Estreptocócicas , Loratadina/farmacología , Loratadina/química , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/tratamiento farmacológico , Humanos , Streptococcus agalactiae/efectos de los fármacos , Animales , Enterococcus/efectos de los fármacos , Streptococcus pyogenes/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Ratones , Vancomicina/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos
2.
Front Oncol ; 14: 1275769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746682

RESUMEN

Background: Whole Slide Image (WSI) analysis, driven by deep learning algorithms, has the potential to revolutionize tumor detection, classification, and treatment response prediction. However, challenges persist, such as limited model generalizability across various cancer types, the labor-intensive nature of patch-level annotation, and the necessity of integrating multi-magnification information to attain a comprehensive understanding of pathological patterns. Methods: In response to these challenges, we introduce MAMILNet, an innovative multi-scale attentional multi-instance learning framework for WSI analysis. The incorporation of attention mechanisms into MAMILNet contributes to its exceptional generalizability across diverse cancer types and prediction tasks. This model considers whole slides as "bags" and individual patches as "instances." By adopting this approach, MAMILNet effectively eliminates the requirement for intricate patch-level labeling, significantly reducing the manual workload for pathologists. To enhance prediction accuracy, the model employs a multi-scale "consultation" strategy, facilitating the aggregation of test outcomes from various magnifications. Results: Our assessment of MAMILNet encompasses 1171 cases encompassing a wide range of cancer types, showcasing its effectiveness in predicting complex tasks. Remarkably, MAMILNet achieved impressive results in distinct domains: for breast cancer tumor detection, the Area Under the Curve (AUC) was 0.8872, with an Accuracy of 0.8760. In the realm of lung cancer typing diagnosis, it achieved an AUC of 0.9551 and an Accuracy of 0.9095. Furthermore, in predicting drug therapy responses for ovarian cancer, MAMILNet achieved an AUC of 0.7358 and an Accuracy of 0.7341. Conclusion: The outcomes of this study underscore the potential of MAMILNet in driving the advancement of precision medicine and individualized treatment planning within the field of oncology. By effectively addressing challenges related to model generalization, annotation workload, and multi-magnification integration, MAMILNet shows promise in enhancing healthcare outcomes for cancer patients. The framework's success in accurately detecting breast tumors, diagnosing lung cancer types, and predicting ovarian cancer therapy responses highlights its significant contribution to the field and paves the way for improved patient care.

3.
Emerg Microbes Infect ; 13(1): 2321981, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38422452

RESUMEN

The rapid proliferation of multidrug-resistant (MDR) bacterial pathogens poses a serious threat to healthcare worldwide. Carbapenem-resistant (CR) Enterobacteriaceae, which have near-universal resistance to available antimicrobials, represent a particularly concerning issue. Herein, we report the identification of AMXT-1501, a polyamine transport system inhibitor with antibacterial activity against Gram-positive and -negative MDR bacteria. We observed minimum inhibitory concentration (MIC)50/MIC90 values for AMXT-1501 in the range of 3.13-12.5 µM (2.24-8.93 µg /mL), including for methicillin-resistant Staphylococcus aureus (MRSA), CR Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. AMXT-1501 was more effective against MRSA and CR E. coli than vancomycin and tigecycline, respectively. Subinhibitory concentrations of AMXT-1501 reduced the biofilm formation of S. aureus and Enterococcus faecalis. Mechanistically, AMXT-1501 exposure damaged microbial membranes and increased membrane permeability and membrane potential by binding to cardiolipin (CL) and phosphatidylglycerol (PG). Importantly, AMXT-1501 pressure did not induce resistance readily in the tested pathogens.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Escherichia coli , Fosfolípidos , Bacterias Gramnegativas
4.
ACS Omega ; 7(10): 9004-9014, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35309438

RESUMEN

Biofilm formation and hemolytic activity are closely related to the pathogenesis of Staphylococcus aureus infections. Herein, we show that lapatinib (12.5 µM) significantly inhibits biofilm formation and hemolytic activity of both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolates. Using quantitative reverse transcription PCR, we found that the RNA levels of transcriptional regulatory genes (RNAIII, agrA, agrC, saeR, and saeS), biofilm-formation-related genes (atl, cidA, clfA, clfB, and icaA), and virulence-related genes (cap5A, hla, hld, hlg, lukDE, lukpvl-S, staphopain B, alpha-3 PSM, beta PSM, and delta PSM) of S. aureus decreased after 6 h treatment with lapatinib. Wild-type S. aureus isolates were continuously cultured in vitro in the presence of increasing concentrations of lapatinib for about 140 days. Subsequently, S. aureus isolates with reduced susceptibility to lapatinib (the inhibitory effect of lapatinib on the biofilm formation of these S. aureus isolates was significantly weakened) were selected. Mutations in the genomes of S. aureus isolates with reduced susceptibility to lapatinib were detected by whole-genome sequencing. We identified four genes with mutations: three genes with known functions (membrane protein, pyrrolidone-carboxylate peptidase, and sensor histidine kinase LytS, respectively) and one gene with unknown function (hypothetical protein). In conclusion, this study indicates that lapatinib significantly inhibits biofilm formation and the hemolytic activity of S. aureus.

5.
Microbiol Spectr ; 10(2): e0054121, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35234502

RESUMEN

Staphylococcus aureus poses a significant threat to human health due to its virulence and multidrug resistance. In addition, recalcitrant biofilm formation of S. aureus often results in chronic infection and the treatment tolerance toward the traditional antibiotics. Thus, the development of novel antimicrobial agents capable to inhibit or eradicate S. aureus biofilm formation does matter. Here, we demonstrated that clemastine showed slight bacteriostatic activity and enhanced the antibacterial activity of oxacillin against S. aureus. Moreover, the dramatic inhibition of biofilm formation was found in clinical S. aureus strains by clemastine. Clemastine inhibited the release of eDNA during the biofilm formation and decreased the S. aureus hemolytic activity. Moreover, the S. aureus SA113 treated with clemastine displayed the decreased transcriptional level of the biofilm formation relevant genes (fnbB, icaA, and icaB), virulence genes (hlg, hld, lukde, lukpvl, beta-PSM, delta-PSM, and cap5A), and the regulatory genes agrA. The proteomics analysis of SA113 treated with clemastine demonstrated the significant changes in levels of biofilm-related proteins (stress response regulators ClpB and GroS, ATP-binding proteins, and urease metabolism), virulence-related proteins (SspA, superantigen, and VWbp), and methicillin resistance-related proteins (glutamine metabolism). The genetic mutations on gdpP (cyclic di-AMP phosphodiesterase) were found in the clemastine-induced tolerant derivative isolate by whole-genome sequencing. Furthermore, the interaction between clemastine and GdpP protein was demonstrated by the molecular docking, gdpP overexpression experiment, and thermal stability assay. Conclusively, clemastine might exert its inhibitory effects against the biofilm formation and hemolysis in S. aureus through targeting GdpP protein. IMPORTANCE The biofilm formation, which protects bacteria from stresses, including antibiotics and host immune responses, can be commonly found in clinical S. aureus isolates worldwide. Treatment failure of traditional antibiotics in biofilm-associated S. aureus infections remains a serious challenge. The novel anti-biofilm drug is urgently needed to address the looming crisis. In this study, clemastine, which is a histamine receptor H1 (HRH1) antagonist, was found to have a novel role of the significant inhibition against the biofilm formation and hemolytic activity of S. aureus and enhanced antibacterial activity against S. aureus when used in combination with oxacillin by targeting the GdpP protein. The discovery of this study identified novel use and mechanism of action of clemastine as a potential anti-biofilm drug for clinical application for S. aureus infectious.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Clemastina/farmacología , Clemastina/uso terapéutico , Hemólisis , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Oxacilina/farmacología , Oxacilina/uso terapéutico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
6.
Stem Cells Dev ; 31(5-6): 97-101, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35018826

RESUMEN

Induced pluripotent stem cells (iPSCs) are a new potential cure for diabetes, characterized by a capacity for self-renewal and differentiation to pancreatic islet beta cells, which secrete insulin and rebuild blood glucose balance. The safety and validity of iPSC-derived cell therapy for diabetes remain controversial. Teratoma formation arising from undifferentiated stem cells is a serious risk, but clinical reports of this phenomenon are rare. In this study, we report a distinctive case of immature teratoma after the patient underwent iPSC-derived cell therapy for diabetes in another hospital, and he was treated in our soft tissue sarcoma center. The patient received islet beta cell injection, in which the cells were differentiated from autologous iPSCs, into the deltoid muscle. Two months later, a mass located in the injection area was detected and presented with enlarged axillary lymph nodes. In this study, we present the clinical, radiological, and pathological features of this immature teratoma. Distinct from typical immature teratomas, this tumor was characterized by rapid growth and local lymph node metastasis. The tumor did not respond to typical chemotherapy regimens for immature teratomas. Magnetic resonance imaging showed heterogeneous enhancement and a rich blood supply to the tumor. Histopathology revealed immature endoderm, mesoderm, and ectoderm tissues composed of osseous, cartilaginous, vascular, and adenoid tissues, which have more cellular atypia than typical teratomas. Staining for both OCT4 and SOX2 was positive in the tumor cell as revealed by immunofluorescence assays; however, insulin staining was negative. Next-generation sequencing showed many missense mutations, but abnormal gene rearrangement, defects, or changes in copy numbers were not observed. In conclusion, more attention should be given to teratoma formation after iPSC-derived cell therapy for diabetes, because these tumors are more aggressive than typical teratomas. The safety and validity of iPSC-derived cell therapy for diabetes should be explored further in standardized clinical trials.


Asunto(s)
Diabetes Mellitus , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Teratoma , Diferenciación Celular , Humanos , Insulina , Masculino , Teratoma/patología
7.
Front Oncol ; 10: 607362, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33604290

RESUMEN

BACKGROUND: In clinical applications of CAR T-cell therapy, life-threatening adverse events including cytokine release syndrome and neurotoxicity can lead to treatment failure. Outcomes of patients treated with anti-CD30 CAR T- cell have been disappointing in relapsing/refractory (r/r) classical Hodgkin's Lymphoma (cHL). METHODS: In order to understand the applicable population of multiple CAR T-cell therapy, we examined the expression of CD19, CD20, and CD30 by immunohistochemistry (IHC) in 38 paraffin-embedded specimens of cHL. In the past two years, we found only one patient with cHL who is eligible for combined anti-CD19 and CD30 CAR T-cell treatment. This patient's baseline characteristics were prone to severe adverse events. We treated this patient with low doses and multiple infusions of anti-CD19 and CD30 CAR T-cell. RESULTS: The positive expression of CD19+ + CD30+ in Reed-Sternberg (RS) cells is approximately 5.2% (2/38). The patient we treated with combined anti-CD19 and CD30 CAR T-cell did not experience severe adverse events related to CAR T-cell therapy and received long term progression-free survival (PFS). CONCLUSION: For high risk r/r cHL patients, low doses of CAR T-cell used over different days at different times might be safe and effective. More clinical trials are warranted for CD19 and CD30 CAR T-cell combination therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA