Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Virus Res ; 342: 199336, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38342315

RESUMEN

Enterovirus 71 (EV71) is the common causative agent of hand-foot-mouth disease (HFMD). Despite evidence in mice model suggested that the interferon (IFN) signaling pathways play a role in defending against this virus, knowledge on the IFN-mediated antiviral response is still limited. Here we identified an IFN-stimulated gene (ISG) called L3HYPDH, whose expression inhibits EV71 replication. Mapping assay indicated that amino acids 61-120 and 295-354 are critical for its optimal antiviral activity. Mechanismly, L3HYPDH specifically inhibits protein translation mediated by EV71 internal ribosome entry site (IRES). Our data thus uncovered a new mechanism utilized by the host cell to restrict EV71 replication.


Asunto(s)
Enfermedad de Boca, Mano y Pie , Interferones , Animales , Ratones , ARN , Aminoácidos , Antivirales
2.
Infect Drug Resist ; 16: 3989-3997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37366501

RESUMEN

Purpose: This study aimed to investigate the pharmacokinetics and target attainment of meropenem and compare the effect of meropenem dosing regimens in critically ill patients. Patients and Methods: Thirty-seven critically ill patients who were administered meropenem in intensive care units were analyzed. Patients were classified according to their renal function. Pharmacokinetic parameters were assessed based on Bayesian estimation. The target attainment of 40%fT > MIC (fraction time that the free concentration exceeds the minimum inhibitory concentration) and 100%fT > MIC with the pathogen MIC of 2 mg/L and 8 mg/L were specially focused. Furthermore, the effects of standard dosing (1g meropenem, 30 min intravenous infusion every 8h) and non-standard dosing (dosage regimens except standard dosing) were compared. Results: The results showed that the values of meropenem clearance (CL), central volume of distribution (V1), intercompartmental clearance (Q), and peripheral volume of distribution (V2) were 3.3 L/h, 9.2 L, 20.1 L/h and 12.8 L, respectively. The CL of the patients among renal function groups was significantly different (p < 0.001). The tow targets attainment for the pathogen MIC of 2 mg/L and 8 mg/L were 89%, 73%, 49% and 27%, respectively. The severe renal impairment group has higher fraction of target attainment than the other group. The standard dosing achieved the target of 40%fT > 2/8 mg/L (85.7% and 81%, respectively) and patients with severe renal impairment achieved the target fraction of 100% for 40%fT > MIC. Additionally, there was no significant difference between standard and non-standard dosing group in target attainment. Conclusion: Our findings indicate that renal function is an important covariate for both meropenem pharmacokinetics parameters and target attainment. The target attainment between standard and non-standard dosing group was not comparable. Therefore, therapeutic drug monitoring is indispensable in the dosing adjustment for critically ill patients if it is available.

3.
Front Immunol ; 13: 817835, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359978

RESUMEN

Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16) are the main causative agents of hand, foot and mouth disease (HFMD) worldwide. Studies showed that EV-A71 and CV-A16 antagonize the interferon (IFN) signaling pathway; however, how IFN controls this viral infection is largely unknown. Here, we identified an IFN-stimulated gene, Transmembrane Protein 106A (TMEM106A), encoding a protein that blocks EV-A71 and CV-A16 infection. Combined approaches measuring viral infection, gene expression, and protein interactions uncovered that TMEM106A is required for optimal IFN-mediated viral inhibition and interferes with EV-A71 binding to host cells on the receptor scavenger receptor class B member 2 (SCARB2). Our findings reveal a new mechanism contributing to the IFN-mediated defense against EV-A71 and CV-A16 infection and provide a potential strategy for HFMD treatment by using the antiviral role of TMEM106A against enterovirus.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Interferón Tipo I , Antígenos Virales , Virus ADN , Enterovirus Humano A/genética , Humanos , Proteínas de Membrana de los Lisosomas , Proteínas de la Membrana/genética , Receptores Depuradores
4.
Vet Med Sci ; 6(1): 105-113, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31589010

RESUMEN

BACKGROUND: Porcine infectious pleuropneumonia caused by Actinobacillus pleuropneumoniae (App) is one of the most serious infectious diseases in pigs and has brought huge economic losses to the world pig industry. The aim of this trial was to evaluate the effect of enteric-coated tilmicosin granule in the treatment and control of artificial infection of App. METHODS: Sixty Duroc and Yorkshire crossbred pigs (50 of which were artificially infected) were divided into six groups: BCG (Blank control group), ICG (Infection-only control group), HDG (High-dose enteric-coated tilmicosin granules), MDG (Medium-dose enteric-coated tilmicosin granules), LDG (Low-dose enteric-coated tilmicosin granules) and TPG (Tilmicosin premix drug control group). The cure rate, mortality, clinical respiratory score, body temperature score, weight gain, lung score and so on were recorded. RESULTS: The cure rate of HDG and MDG was as high as 90%, the mortality was 10%, and the clinical signs recovered quickly. CONCLUSION: The results showed that enteric-coated tilmicosin granules had obvious therapeutic effect on artificial infection, which could reduce the damage caused by the disease and reduce the mortality.


Asunto(s)
Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Enfermedades de los Porcinos/tratamiento farmacológico , Tilosina/análogos & derivados , Infecciones por Actinobacillus/tratamiento farmacológico , Infecciones por Actinobacillus/microbiología , Animales , Antibacterianos/administración & dosificación , Femenino , Masculino , Sus scrofa , Porcinos , Enfermedades de los Porcinos/microbiología , Comprimidos Recubiertos , Tilosina/administración & dosificación , Tilosina/farmacología
5.
Front Microbiol ; 10: 2308, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649648

RESUMEN

37662RM1 and 37662RM2 are two phenotypically different, carbapenem-resistant mutants of Acinetobacter baumannii 37662 isolate following selection with meropenem (MEM) at sub-inhibitory concentrations. 37662RM2 lacks capsule synthesis and shows dramatically increased biofilm formation, while 37662RM1 shows merely impaired capsule synthesis. Here we report that 37662RM1 and RM2 have transcription profiles that are different from those of their starting strain, 37662WT. There were far more differentially expressed genes in 37662RM2 than in 37662RM1. The capsule polysaccharide (CPS) synthesis-required genes (itrA2, gtr5, psaA, psaB, psaC, psaD, psaE, psaF, kpsS2, wzx, wzy, wza, wzb, and wzc) showed reduced transcription levels in 37662RM2, which may at least partially explain the loss of capsule synthesis. The csu operon genes responsible for pili assembly and their regulator genes bfmR-bfmS were over-expressed in 37662RM2. This result together with the established critical roles of these genes in biofilm formation provide solid evidence that up-regulation of csu and bfmR-bfmS should be considered responsible for the enhanced biofilm formation in 37662RM2. ISAba1 was found to insert into the intergenic region between the csu operon and the acrR gene and should be responsible for the significant up-regulation of acrR, which was proposed to be associated with biofilm formation. Genome sequencing revealed that the ISAba1 upstream bla OXA- 508 (a new member of bla OXA- 51-like) and acrR were duplicated, suggesting a replicative transposition event. Altogether, the phenotype divergence driven by MEM selection mainly occurs at the RNA level and the transposition of ISAba1 plays an important role in modulating gene expression to adapt to the environment.

6.
Int J Antimicrob Agents ; 53(4): 362-369, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30599241

RESUMEN

Hand-foot-mouth disease (HFMD) is a common viral disease in young children, mainly caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Specific antiviral agents are not commercially available yet. Here we report that the macrolide antibiotics spiramycin (SPM) and azithromycin (AZM) possess antiviral activities against EV-A71 and CV-A16. SPM significantly reduced EV-A71 RNA and protein levels, most likely through interfering with viral RNA replication. The SPM-resistant EV-A71 variants showed similar resistance to AZM, indicating a similar anti-EV-A71 mechanism by which these two drugs exert their functions. The mutations of these variants were reproducibly mapped to VP1 and 2A, which were confirmed to confer resistance to SPM. Animal experiments showed that AZM possesses stronger anti-infection efficacy than SPM, greatly alleviated the disease symptoms and increased the survival rate in a mouse model severely infected with EV-A71. In all, our work suggests that AZM is a potential treatment option for EV-A71-induced HFMD, whose proved safety for infants and children makes it even more promising.


Asunto(s)
Antivirales/uso terapéutico , Azitromicina/uso terapéutico , Enterovirus Humano A/efectos de los fármacos , Enfermedad de Boca, Mano y Pie/tratamiento farmacológico , Espiramicina/uso terapéutico , Replicación Viral/efectos de los fármacos , Animales , Proteínas de la Cápside/genética , Línea Celular , Preescolar , Chlorocebus aethiops , Cisteína Endopeptidasas/genética , Farmacorresistencia Viral/genética , Enterovirus Humano A/crecimiento & desarrollo , Células HEK293 , Enfermedad de Boca, Mano y Pie/virología , Humanos , ARN Viral/biosíntesis , Células Vero , Proteínas Virales/genética , Replicación Viral/genética
7.
Int J Antimicrob Agents ; 50(3): 419-426, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28669829

RESUMEN

Acinetobacter baumannii 37662 is a carbapenem-susceptible isolate with blaOXA-51-like as the sole carbapenemase gene. Following selection with meropenem (MEM) at a subinhibitory concentration, two morphologically different mutants, designated 37662RM1 and 37662RM2, were obtained and characterised. Compared with the parent strain, resistant mutant 37662RM1 grew at a slower rate and had impaired capsule synthesis, whereas 37662RM2 grew fast and abolished capsule synthesis. In addition, the latter resistant mutant also lost pathogenicity but showed significantly enhanced biofilm formation. Transposition of the insertion sequence ISAba1 and formation of ISAba1-blaOXA-51-like was responsible for the upregulated expression of blaOXA-51-like. The blaOXA-51-like gene of A. baumannii 37662 is a close variant of blaOXA-138 and has been designated blaOXA-508. Overproduction of OXA-508 conferred major carbapenem resistance to these two mutants. Overall, these results indicate that a subinhibitory concentration of MEM can induce phenotype divergence together with carbapenem resistance in A. baumannii.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/enzimología , Antibacterianos/farmacología , Proteínas Bacterianas/biosíntesis , Farmacorresistencia Bacteriana , Selección Genética , Tienamicinas/farmacología , beta-Lactamasas/biosíntesis , Acinetobacter baumannii/genética , Acinetobacter baumannii/fisiología , Animales , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Elementos Transponibles de ADN , Femenino , Regulación Bacteriana de la Expresión Génica , Reordenamiento Génico , Variación Genética , Meropenem , Ratones Endogámicos C57BL , Fenotipo , Recombinación Genética , Virulencia , beta-Lactamasas/genética
8.
Sci Rep ; 5: 8976, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25755005

RESUMEN

Acinetobacter pittii 44551 was recovered from a patient with gout combined with tuberculosis and was found to harbor the carbapenemase genes blaNDM-1 and blaOXA-58 on two different plasmids pNDM-44551 and pOXA58-44551, respectively. pNDM-44551 displayed high self-transferability across multiple bacterial species, while pOXA58-44551 was likely co-transferable with pNDM-44551 into A. baumannii receipts. pNDM-44551 was a close variant of the previously characterized pNDM-BJ01, and the blaNDM-1 gene cluster was arranged sequentially as orfA, ISAba14, aphA6, ISAba125, blaNDM-1, bleMBL, ΔtrpF, dsbC, tnpR, and zeta. pOXA58-44551 was a repAci9-containing plasmid, and blaOXA-58 was embedded in a 372F-ISAba3-like-blaOXA-58-ISAba3 structure. The mobile genetic platforms of blaNDM-1 and blaOXA-58 herein showed some differences from their previously characterized variants. The production of NDM-1 in strain 44551 contributed the majority to its high resistance to carbapenems, while the blaOXA-58 stayed silent most likely due to the lack of an upstream promoter to drive its transcription. Increased surveillance of Acinetobacter co-harboring blaNDM-1 (active) and blaOXA-58 (either active or silent) is urgently needed.


Asunto(s)
Infecciones por Acinetobacter/genética , Acinetobacter/enzimología , beta-Lactamasas/genética , Infecciones por Acinetobacter/microbiología , Elementos Transponibles de ADN/genética , Humanos , Plásmidos/genética , beta-Lactamasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA