Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
RSC Adv ; 14(27): 19312-19321, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38887645

RESUMEN

Periodontal tissue regeneration continues to face significant clinical challenges. Periodontitis leads to alveolar bone resorption and even tooth loss due to persistent microbial infection and persistent inflammatory response. As a promising topical drug delivery system, the application of hydrogels in the controlled release of periodontal bioactive drugs has aroused great interest. Therefore, the design and preparation of an injectable hydrogel with self-repairing properties for periodontitis treatment is still in great demand. In this study, polysaccharide-based self-healing hydrogels with antimicrobial osteogenic properties were developed. Zinc ions are introduced into a dynamic cross-linking network formed by dynamic Schiff bases between carboxymethyl chitosan and oxidized hyaluronic acid via coordination bonds. The OC-Zn hydrogels exhibited good tissue adhesion, good fatigue resistance, excellent self-healing ability, low cytotoxicity, good broad-spectrum antimicrobial activity, and osteogenic activity. Therefore, the designed hydrogels allow the development of drug delivery systems as a potential treatment for periodontitis.

2.
Front Chem ; 10: 838920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155371

RESUMEN

Skin wound caused by external injury is usually difficult to be cured by conventional topical administration because of its poor drug diffusion across the stratum corneum. It has been recognized that stratum corneum is the major obstacle for transdermal drug delivery. To address this issue, microneedles (MNs) have been developed to penetrate the stratum corneum of the skin and then form micron-sized pores between the epidermis and the dermis layers. As such, biomacromolecule drugs and/or insoluble drug molecules can be allowed for effective transdermal penetration. A multifunctional microneedle array patch that can avoid wound infection and promote tissue remolding has important value for wound healing. Among others, marine polysaccharides have attracted much attention in multifarious biomedical applications due to their excellent (bio)physical and chemical properties. Herein, we developed a microneedle array patch using a blend of kangfuxin (KFX), chitosan (CS), and fucoidan (FD), named KCFMN, for accelerating full-thickness wound healing. The traditional Chinese medicine KFX extracted from Periplaneta americana (PA) has effective bio-functions in promoting wound healing. The macro-/micro-morphology and (bio)physicochemical properties of such composite microneedles were also studied. We showed that the KCFMN patch displayed noticeable antibacterial properties and good cytocompatibility. In particular, the KCFMN patch significantly accelerated the wound healing development in a full-thickness wound in rats by improving the epithelial thickness and collagen deposition. Thus, this versatile KCFMN patch has great prospects as a dressing for full-thickness wound healing.

3.
Med Eng Phys ; 83: 123-129, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32527518

RESUMEN

The aim of this study was to investigate the residual limb stress of a transfemoral amputee's Compression/Release Stabilized (CRS) socket by finite elemental modelling. The model was constructed from magnetic resonance images of the left residual limb of a 48-year-old male transfemoral amputee. Two conditions were simulated. In the donning condition, the prosthetic socket under the residual limb moved proximally until it reached the required donned position. The weight-bearing condition was subsequently simulated by applying body weight (800N) at the femoral head while keeping the distal end of the socket fixed. The maximum contact pressure was concentrated at the proximal anterior-medial regions of the residual limb surfaces in both conditions. In the donning condition, the maximum von Mises stress and the maximum contact pressure were 277.7 kPa and 254 kPa respectively. The respective values were 191.9 kPa and 218.5 kPa when body weight was applied. The stress and contact pressure did not exceed the suggested threshold value of pain. Our findings provide important biomechanical information on the CRS socket that may help future design optimization.


Asunto(s)
Amputados , Miembros Artificiales , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Masculino , Persona de Mediana Edad , Diseño de Prótesis , Soporte de Peso
4.
J Neuroeng Rehabil ; 16(1): 73, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186009

RESUMEN

BACKGROUND: High density surface electromyography (EMG) can be used to estimate muscle innervation zones (IZ). The objective of this study was to compare the differences in the distribution of the biceps brachii (BB) IZ derived from voluntary contractions (VC) and electrical stimulation (ES) of the musculocutaneous nerve. METHODS: Surface EMG signals were recorded from the medial and lateral BB with two 64-channel high density electrode matrices in eight healthy men. The surface EMG was recorded at different percentages of the maximal voluntary contraction (MVC) force (20-100% MVC) and at different percentages of the current needed to elicit a maximal M-wave (20-100% Imax). The IZs of the medial and lateral BB were identified from the EMG signals and expressed as a row number within a given medial-lateral column. RESULTS: ES current intensity had no significant effect on the group mean IZ location (p > 0.05). However, The IZ during VC was located more proximally with increasing force (p < 0.05), likely due to muscle shortening. The position of the IZ varied slightly (by up to ~ 8 mm) in a medial-lateral direction under both contraction types, but this spatial effect was not significant. The IZ during ES and weak VC (20, 40% MVC) was similar (p > 0.05), but was more proximal in the latter than the former during 60-100% MVC (p < 0.05). CONCLUSION: ES can be used to detect spatial differences in IZ location free of the confounding effects of muscle shortening and recruitment order of different sized motor units. The method may prove beneficial for locating the IZ in patients who lack voluntary control of their musculature.


Asunto(s)
Electromiografía/métodos , Músculo Esquelético/inervación , Adulto , Brazo , Estimulación Eléctrica , Humanos , Contracción Isométrica/fisiología , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Adulto Joven
5.
PLoS One ; 14(4): e0214460, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30939170

RESUMEN

OBJECTIVE: To design and evaluate the accuracy of a novel navigation template suitable for posterior cervical screw placement surgery by using 3D printing technology to improve the existing guiding template design. METHODS: The researchers (including spine surgeons and technicians) used CT to perform thin-slice scanning on 12 cases of normal upper cervical vertebral specimens and defined the screw channels that were completely located in the pedicle without penetrating the cortex as ideal screw channels, then designed the ideal channel of the upper cervical vertebral (atlantoaxial) pedicle screw by computer software which was regarded as the preset values, and recorded the screw entrance point, transverse angle and sagittal angle of the ideal channel. Then, researchers designed the novel navigation templates for placement pedicle screw according to the ideal screw channel preset values and manufactured them with one for every single vertebra by 3D printer. A senior spine surgeon performed the posterior surgery to implant pedicle screw on the specimens by the novel navigation templates, then performed CT thin-slice scanning on the specimens again after removing the screws, and reconstructed the actual screws channel by computer software, recorded the screw entrance point, transverse angle and sagittal angle of the actual channels which were defined as the actual values and evaluated them according to Kawaguchi's pedicle screw evaluation standard finally. The differences between the preoperative preset values of ideal screw channel and the postoperative actual values of actual screw channel were compared by a nonparametric paired rank test. RESULTS: 48 screws were placed on 12 cases of upper cervical vertebral specimens in total. It showed that the grade 0, I, II, III channels in this study were 47, 1, 0, 0, respectively. The grade 0 channels accounted for 97.92% of the total number of channels. There was no significant difference with regard to the screw entrance point, the transverse angle, and the sagittal angle between the preoperative preset values of ideal screw channels and the postoperative actual values of actual screw channels. CONCLUSION: To implant pedicle screw assisted with the novel individually navigation template designed by 3D printed in the posterior cervical surgery can improve accuracy of pedicle screw placement and safety of the surgery.


Asunto(s)
Vértebras Cervicales/diagnóstico por imagen , Tornillos Pediculares , Impresión Tridimensional , Fusión Vertebral/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto , Vértebras Cervicales/cirugía , Femenino , Humanos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Riesgo , Cirugía Asistida por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA