Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Ann Neurol ; 93(6): 1198-1213, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36843340

RESUMEN

OBJECTIVE: Spinal cord injury (SCI) damages synaptic connections between corticospinal axons and motoneurons of many muscles, resulting in devastating paralysis. We hypothesized that strengthening corticospinal-motoneuronal synapses at multiple spinal cord levels through Hebbian plasticity (i.e., "neurons that fire together, wire together") promotes recovery of leg and arm function. METHODS: Twenty participants with chronic SCI were randomly assigned to receive 20 sessions of Hebbian or sham stimulation targeting corticospinal-motoneuronal synapses of multiple leg muscles followed by exercise. Based on the results from this study, in a follow-up prospective study, 11 more participants received 40 sessions of Hebbian stimulation targeting corticospinal-motoneuronal synapses of multiple arm and leg muscles followed by exercise. During Hebbian stimulation sessions, 180 paired pulses elicited corticospinal action potentials by magnetic (motor cortex) and/or electrical (thoracic spine) stimulation allowing volleys to arrive at the spinal cord 1-2 milliseconds before motoneurons were activated retrogradely via bilateral electrical stimulation (brachial plexus, ulnar, femoral, and common peroneal nerves) for biceps brachii, first dorsal interosseous, quadriceps femoris, and tibialis anterior muscles as needed. RESULTS: We found in our randomized study that participants receiving Hebbian stimulation improved their walking speed and corticospinal function to a greater extent than individuals receiving sham stimulation. In agreement, prospective study participants improved their grasping and walking, corticospinal function, and quality of life metrics, exhibiting greater improvements with more sessions that persisted 9-month post-therapy. INTERPRETATION: Our findings suggest that multisite Hebbian stimulation, informed by the physiology of the corticospinal system, represents an effective strategy to promote functional recovery following SCI. ANN NEUROL 2023;93:1198-1213.


Asunto(s)
Calidad de Vida , Traumatismos de la Médula Espinal , Humanos , Estudios Prospectivos , Tractos Piramidales , Traumatismos de la Médula Espinal/terapia , Médula Espinal , Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Potenciales Evocados Motores/fisiología , Plasticidad Neuronal/fisiología
2.
Cell ; 185(26): 5011-5027.e20, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563666

RESUMEN

To track and control self-location, animals integrate their movements through space. Representations of self-location are observed in the mammalian hippocampal formation, but it is unknown if positional representations exist in more ancient brain regions, how they arise from integrated self-motion, and by what pathways they control locomotion. Here, in a head-fixed, fictive-swimming, virtual-reality preparation, we exposed larval zebrafish to a variety of involuntary displacements. They tracked these displacements and, many seconds later, moved toward their earlier location through corrective swimming ("positional homeostasis"). Whole-brain functional imaging revealed a network in the medulla that stores a memory of location and induces an error signal in the inferior olive to drive future corrective swimming. Optogenetically manipulating medullary integrator cells evoked displacement-memory behavior. Ablating them, or downstream olivary neurons, abolished displacement corrections. These results reveal a multiregional hindbrain circuit in vertebrates that integrates self-motion and stores self-location to control locomotor behavior.


Asunto(s)
Neuronas , Pez Cebra , Animales , Pez Cebra/fisiología , Neuronas/fisiología , Rombencéfalo/fisiología , Encéfalo/fisiología , Natación/fisiología , Homeostasis , Mamíferos
3.
Elife ; 112022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36286237

RESUMEN

Brain function is mediated by the physiological coordination of a vast, intricately connected network of molecular and cellular components. The physiological properties of neural network components can be quantified with high throughput. The ability to assess many animals per study has been critical in relating physiological properties to behavior. By contrast, the synaptic structure of neural circuits is presently quantifiable only with low throughput. This low throughput hampers efforts to understand how variations in network structure relate to variations in behavior. For neuroanatomical reconstruction, there is a methodological gulf between electron microscopic (EM) methods, which yield dense connectomes at considerable expense and low throughput, and light microscopic (LM) methods, which provide molecular and cell-type specificity at high throughput but without synaptic resolution. To bridge this gulf, we developed a high-throughput analysis pipeline and imaging protocol using tissue expansion and light sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many animals with single-synapse resolution and molecular contrast. Using Drosophila to validate this approach, we demonstrate that it yields synaptic counts similar to those obtained by EM, enables synaptic connectivity to be compared across sex and experience, and can be used to correlate structural connectivity, functional connectivity, and behavior. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.


Asunto(s)
Conectoma , Microscopía , Animales , Conectoma/métodos , Sinapsis/fisiología , Drosophila , Expansión de Tejido
4.
Nat Commun ; 13(1): 3802, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778397

RESUMEN

Folded proteins are assumed to be built upon fixed scaffolds of secondary structure, α-helices and ß-sheets. Experimentally determined structures of >58,000 non-redundant proteins support this assumption, though it has recently been challenged by ~100 fold-switching proteins. Though ostensibly rare, these proteins raise the question of how many uncharacterized proteins have shapeshifting-rather than fixed-secondary structures. Here, we use a comparative sequence-based approach to predict fold switching in the universally conserved NusG transcription factor family, one member of which has a 50-residue regulatory subunit experimentally shown to switch between α-helical and ß-sheet folds. Our approach predicts that 24% of sequences in this family undergo similar α-helix ⇌ ß-sheet transitions. While these predictions cannot be reproduced by other state-of-the-art computational methods, they are confirmed by circular dichroism and nuclear magnetic resonance spectroscopy for 10 out of 10 sequence-diverse variants. This work suggests that fold switching may be a pervasive mechanism of transcriptional regulation in all kingdoms of life.


Asunto(s)
Factores de Transcripción , Secuencia de Aminoácidos , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos
5.
Elife ; 102021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34114951

RESUMEN

In severe viral pneumonia, including Coronavirus disease 2019 (COVID-19), the viral replication phase is often followed by hyperinflammation, which can lead to acute respiratory distress syndrome, multi-organ failure, and death. We previously demonstrated that alpha-1 adrenergic receptor (⍺1-AR) antagonists can prevent hyperinflammation and death in mice. Here, we conducted retrospective analyses in two cohorts of patients with acute respiratory distress (ARD, n = 18,547) and three cohorts with pneumonia (n = 400,907). Federated across two ARD cohorts, we find that patients exposed to ⍺1-AR antagonists, as compared to unexposed patients, had a 34% relative risk reduction for mechanical ventilation and death (OR = 0.70, p = 0.021). We replicated these methods on three pneumonia cohorts, all with similar effects on both outcomes. All results were robust to sensitivity analyses. These results highlight the urgent need for prospective trials testing whether prophylactic use of ⍺1-AR antagonists ameliorates lower respiratory tract infection-associated hyperinflammation and death, as observed in COVID-19.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Respiración Artificial/estadística & datos numéricos , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Doxazosina/uso terapéutico , Humanos , Masculino , Persona de Mediana Edad , Neumonía Viral/mortalidad , Síndrome de Dificultad Respiratoria/mortalidad , Estudios Retrospectivos , Suecia/epidemiología , Tamsulosina/uso terapéutico , Estados Unidos/epidemiología
6.
Curr Opin Neurobiol ; 64: 151-160, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33091825

RESUMEN

The brain is tasked with choosing actions that maximize an animal's chances of survival and reproduction. These choices must be flexible and informed by the current state of the environment, the needs of the body, and the outcomes of past actions. This information is physiologically encoded and processed across different brain regions on a wide range of spatial scales, from molecules in single synapses to networks of brain areas. Uncovering these spatially distributed neural interactions underlying behavior requires investigations that span a similar range of spatial scales. Larval zebrafish, given their small size, transparency, and ease of genetic access, are a good model organism for such investigations, allowing the use of modern microscopy, molecular biology, and computational techniques. These approaches are yielding new insights into the mechanistic basis of behavioral states, which we review here and compare to related studies in mammalian species.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Pez Cebra , Animales , Encéfalo , Larva , Sinapsis
7.
Neuron ; 107(5): 954-971.e9, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32589878

RESUMEN

Adaptive movements are critical for animal survival. To guide future actions, the brain monitors various outcomes, including achievement of movement and appetitive goals. The nature of these outcome signals and their neuronal and network realization in the motor cortex (M1), which directs skilled movements, is largely unknown. Using a dexterity task, calcium imaging, optogenetic perturbations, and behavioral manipulations, we studied outcome signals in the murine forelimb M1. We found two populations of layer 2-3 neurons, termed success- and failure-related neurons, that develop with training, and report end results of trials. In these neurons, prolonged responses were recorded after success or failure trials independent of reward and kinematics. In addition, the initial state of layer 5 pyramidal tract neurons contained a memory trace of the previous trial's outcome. Intertrial cortical activity was needed to learn new task requirements. These M1 layer-specific performance outcome signals may support reinforcement motor learning of skilled behavior.


Asunto(s)
Aprendizaje/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Destreza Motora/fisiología , Células Piramidales/citología , Células Piramidales/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Science ; 365(6454): 699-704, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31371562

RESUMEN

Genetically encoded voltage indicators (GEVIs) enable monitoring of neuronal activity at high spatial and temporal resolution. However, the utility of existing GEVIs has been limited by the brightness and photostability of fluorescent proteins and rhodopsins. We engineered a GEVI, called Voltron, that uses bright and photostable synthetic dyes instead of protein-based fluorophores, thereby extending the number of neurons imaged simultaneously in vivo by a factor of 10 and enabling imaging for significantly longer durations relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In the mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously over a 15-minute period of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior.


Asunto(s)
Monitoreo Fisiológico/métodos , Neuroimagen/métodos , Neuronas/fisiología , Imagen de Colorante Sensible al Voltaje/métodos , Animales , Conducta Animal , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Ingeniería Genética , Larva , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Mesencéfalo/citología , Mesencéfalo/fisiología , Ratones , Optogenética , Dominios Proteicos , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Natación , Pez Cebra
9.
Cell ; 178(1): 27-43.e19, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31230713

RESUMEN

When a behavior repeatedly fails to achieve its goal, animals often give up and become passive, which can be strategic for preserving energy or regrouping between attempts. It is unknown how the brain identifies behavioral failures and mediates this behavioral-state switch. In larval zebrafish swimming in virtual reality, visual feedback can be withheld so that swim attempts fail to trigger expected visual flow. After tens of seconds of such motor futility, animals became passive for similar durations. Whole-brain calcium imaging revealed noradrenergic neurons that responded specifically to failed swim attempts and radial astrocytes whose calcium levels accumulated with increasing numbers of failed attempts. Using cell ablation and optogenetic or chemogenetic activation, we found that noradrenergic neurons progressively activated brainstem radial astrocytes, which then suppressed swimming. Thus, radial astrocytes perform a computation critical for behavior: they accumulate evidence that current actions are ineffective and consequently drive changes in behavioral states. VIDEO ABSTRACT.


Asunto(s)
Astrocitos/metabolismo , Conducta Animal/fisiología , Larva/fisiología , Pez Cebra/fisiología , Neuronas Adrenérgicas/metabolismo , Animales , Animales Modificados Genéticamente/fisiología , Astrocitos/citología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Calcio/metabolismo , Comunicación Celular/fisiología , Retroalimentación Sensorial/fisiología , Neuronas GABAérgicas/metabolismo , Potenciales de la Membrana/fisiología , Optogenética , Natación/fisiología
10.
Sci Transl Med ; 10(432)2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540617

RESUMEN

To effortlessly complete an intentional movement, the brain needs feedback from the body regarding the movement's progress. This largely nonconscious kinesthetic sense helps the brain to learn relationships between motor commands and outcomes to correct movement errors. Prosthetic systems for restoring function have predominantly focused on controlling motorized joint movement. Without the kinesthetic sense, however, these devices do not become intuitively controllable. We report a method for endowing human amputees with a kinesthetic perception of dexterous robotic hands. Vibrating the muscles used for prosthetic control via a neural-machine interface produced the illusory perception of complex grip movements. Within minutes, three amputees integrated this kinesthetic feedback and improved movement control. Combining intent, kinesthesia, and vision instilled participants with a sense of agency over the robotic movements. This feedback approach for closed-loop control opens a pathway to seamless integration of minds and machines.


Asunto(s)
Prótesis e Implantes , Amputados , Mano/fisiología , Humanos , Cinestesia , Percepción de Movimiento/fisiología , Movimiento/fisiología , Percepción/fisiología , Robótica
11.
Science ; 356(6333)2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28385956

RESUMEN

Behavior has molecular, cellular, and circuit determinants. However, because many proteins are broadly expressed, their acute manipulation within defined cells has been difficult. Here, we combined the speed and molecular specificity of pharmacology with the cell type specificity of genetic tools. DART (drugs acutely restricted by tethering) is a technique that rapidly localizes drugs to the surface of defined cells, without prior modification of the native target. We first developed an AMPAR antagonist DART, with validation in cultured neuronal assays, in slices of mouse dorsal striatum, and in behaving mice. In parkinsonian animals, motor deficits were causally attributed to AMPARs in indirect spiny projection neurons (iSPNs) and to excess phasic firing of tonically active interneurons (TANs). Together, iSPNs and TANs (i.e., D2 cells) drove akinesia, whereas movement execution deficits reflected the ratio of AMPARs in D2 versus D1 cells. Finally, we designed a muscarinic antagonist DART in one iteration, demonstrating applicability of the method to diverse targets.


Asunto(s)
Conducta Animal/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Quinoxalinas/farmacología , Receptores de Glutamato/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Diseño de Fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Antagonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Optogenética , Enfermedad de Parkinson/fisiopatología
12.
Cell ; 167(4): 933-946.e20, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881303

RESUMEN

To execute accurate movements, animals must continuously adapt their behavior to changes in their bodies and environments. Animals can learn changes in the relationship between their locomotor commands and the resulting distance moved, then adjust command strength to achieve a desired travel distance. It is largely unknown which circuits implement this form of motor learning, or how. Using whole-brain neuronal imaging and circuit manipulations in larval zebrafish, we discovered that the serotonergic dorsal raphe nucleus (DRN) mediates short-term locomotor learning. Serotonergic DRN neurons respond phasically to swim-induced visual motion, but little to motion that is not self-generated. During prolonged exposure to a given motosensory gain, persistent DRN activity emerges that stores the learned efficacy of motor commands and adapts future locomotor drive for tens of seconds. The DRN's ability to track the effectiveness of motor intent may constitute a computational building block for the broader functions of the serotonergic system. VIDEO ABSTRACT.


Asunto(s)
Aprendizaje , Modelos Neurológicos , Natación , Pez Cebra/fisiología , Animales , Mapeo Encefálico , Larva , Optogenética , Núcleos del Rafe/fisiología , Neuronas Serotoninérgicas/citología , Neuronas Serotoninérgicas/fisiología , Procesamiento Espacial
14.
Elife ; 52016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27383052

RESUMEN

Myelin is best known for its role in increasing the conduction velocity and metabolic efficiency of long-range excitatory axons. Accordingly, the myelin observed in neocortical gray matter is thought to mostly ensheath excitatory axons connecting to subcortical regions and distant cortical areas. Using independent analyses of light and electron microscopy data from mouse neocortex, we show that a surprisingly large fraction of cortical myelin (half the myelin in layer 2/3 and a quarter in layer 4) ensheathes axons of inhibitory neurons, specifically of parvalbumin-positive basket cells. This myelin differs significantly from that of excitatory axons in distribution and protein composition. Myelin on inhibitory axons is unlikely to meaningfully hasten the arrival of spikes at their pre-synaptic terminals, due to the patchy distribution and short path-lengths observed. Our results thus highlight the need for exploring alternative roles for myelin in neocortical circuits.


Asunto(s)
Interneuronas/citología , Vaina de Mielina/química , Vaina de Mielina/metabolismo , Neocórtex/química , Neocórtex/citología , Proteínas/análisis , Animales , Ratones
15.
Nat Neurosci ; 19(2): 308-15, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26691829

RESUMEN

Understanding the functions of a brain region requires knowing the neural representations of its myriad inputs, local neurons and outputs. Primary visual cortex (V1) has long been thought to compute visual orientation from untuned thalamic inputs, but very few thalamic inputs have been measured in any mammal. We determined the response properties of ∼ 28,000 thalamic boutons and ∼ 4,000 cortical neurons in layers 1-5 of awake mouse V1. Using adaptive optics that allows accurate measurement of bouton activity deep in cortex, we found that around half of the boutons in the main thalamorecipient L4 carried orientation-tuned information and that their orientation and direction biases were also dominant in the L4 neuron population, suggesting that these neurons may inherit their selectivity from tuned thalamic inputs. Cortical neurons in all layers exhibited sharper tuning than thalamic boutons and a greater diversity of preferred orientations. Our results provide data-rich constraints for refining mechanistic models of cortical computation.


Asunto(s)
Orientación/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Algoritmos , Animales , Mapeo Encefálico , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Red Nerviosa/fisiología , Neuroimagen , Neuronas/fisiología , Estimulación Luminosa , Terminales Presinápticos/fisiología , Vías Visuales/fisiología
16.
Elife ; 4: e10774, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26633811

RESUMEN

Mammalian cerebral cortex is accepted as being critical for voluntary motor control, but what functions depend on cortex is still unclear. Here we used rapid, reversible optogenetic inhibition to test the role of cortex during a head-fixed task in which mice reach, grab, and eat a food pellet. Sudden cortical inhibition blocked initiation or froze execution of this skilled prehension behavior, but left untrained forelimb movements unaffected. Unexpectedly, kinematically normal prehension occurred immediately after cortical inhibition, even during rest periods lacking cue and pellet. This 'rebound' prehension was only evoked in trained and food-deprived animals, suggesting that a motivation-gated motor engram sufficient to evoke prehension is activated at inhibition's end. These results demonstrate the necessity and sufficiency of cortical activity for enacting a learned skill.


Asunto(s)
Corteza Cerebral/fisiología , Conducta Alimentaria , Locomoción , Animales , Ratones , Optogenética
17.
Cell ; 162(6): 1418-30, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26359992

RESUMEN

Progressive depletion of midbrain dopamine neurons (PDD) is associated with deficits in the initiation, speed, and fluidity of voluntary movement. Models of basal ganglia function focus on initiation deficits; however, it is unclear how they account for deficits in the speed or amplitude of movement (vigor). Using an effort-based operant conditioning task for head-fixed mice, we discovered distinct functional classes of neurons in the dorsal striatum that represent movement vigor. Mice with PDD exhibited a progressive reduction in vigor, along with a selective impairment of its neural representation in striatum. Restoration of dopaminergic tone with a synthetic precursor ameliorated deficits in movement vigor and its neural representation, while suppression of striatal activity during movement was sufficient to reduce vigor. Thus, dopaminergic input to the dorsal striatum is indispensable for the emergence of striatal activity that mediates adaptive changes in movement vigor. These results suggest refined intervention strategies for Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Mesencéfalo/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Animales , Ganglios Basales/metabolismo , Modelos Animales de Enfermedad , Hipocinesia/metabolismo , Hipocinesia/fisiopatología , Ratones , Músculo Esquelético/fisiología
18.
Elife ; 42015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26247712

RESUMEN

Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity.


Asunto(s)
Potenciales de Acción , Dendritas/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo , Células Piramidales/fisiología , Sodio/metabolismo , Animales , Ratas Wistar
19.
Cell Rep ; 11(12): 1953-65, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26095367

RESUMEN

To adapt to an ever-changing environment, animals consolidate some, but not all, learning experiences to long-term memory. In mammals, long-term memory consolidation often involves neural pathway reactivation hours after memory acquisition. It is not known whether this delayed-reactivation schema is common across the animal kingdom or how information is stored during the delay period. Here, we show that, during courtship suppression learning, Drosophila exhibits delayed long-term memory consolidation. We also show that the same class of dopaminergic neurons engaged earlier in memory acquisition is also both necessary and sufficient for delayed long-term memory consolidation. Furthermore, we present evidence that, during learning, the translational regulator Orb2A tags specific synapses of mushroom body neurons for later consolidation. Consolidation involves the subsequent recruitment of Orb2B and the activity-dependent synthesis of CaMKII. Thus, our results provide evidence for the role of a neuromodulated, synapse-restricted molecule bridging memory acquisition and long-term memory consolidation in a learning animal.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas de Drosophila/genética , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Sinapsis/genética , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Animales , Animales Modificados Genéticamente , Drosophila , Aprendizaje/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Sinapsis/fisiología
20.
Nature ; 520(7549): 633-9, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25896325

RESUMEN

Natural events present multiple types of sensory cues, each detected by a specialized sensory modality. Combining information from several modalities is essential for the selection of appropriate actions. Key to understanding multimodal computations is determining the structural patterns of multimodal convergence and how these patterns contribute to behaviour. Modalities could converge early, late or at multiple levels in the sensory processing hierarchy. Here we show that combining mechanosensory and nociceptive cues synergistically enhances the selection of the fastest mode of escape locomotion in Drosophila larvae. In an electron microscopy volume that spans the entire insect nervous system, we reconstructed the multisensory circuit supporting the synergy, spanning multiple levels of the sensory processing hierarchy. The wiring diagram revealed a complex multilevel multimodal convergence architecture. Using behavioural and physiological studies, we identified functionally connected circuit nodes that trigger the fastest locomotor mode, and others that facilitate it, and we provide evidence that multiple levels of multimodal integration contribute to escape mode selection. We propose that the multilevel multimodal convergence architecture may be a general feature of multisensory circuits enabling complex input-output functions and selective tuning to ecologically relevant combinations of cues.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Locomoción , Vías Nerviosas/fisiología , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/fisiología , Señales (Psicología) , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Interneuronas/metabolismo , Larva/citología , Larva/fisiología , Neuronas Motoras/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA