Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Asunto de la revista
Intervalo de año de publicación
1.
Biol Res ; 56(1): 15, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991509

RESUMEN

BACKGROUND: Splenectomy may lead to severe postoperative complications, including sepsis and cancers. A possible solution to this problem is heterotopic autotransplantation of the spleen. Splenic autografts rapidly restore the regular splenic microanatomy in model animals. However, the functional competence of such regenerated autografts in terms of lympho- and hematopoietic capacity remains uncertain. Therefore, this study aimed to monitor the dynamics of B and T lymphocyte populations, the monocyte-macrophage system, and megakaryocytopoiesis in murine splenic autografts. METHODS: The model of subcutaneous splenic engraftment was implemented in C57Bl male mice. Cell sources of functional recovery were studied using heterotopic transplantations from B10-GFP donors to C57Bl recipients. The cellular composition dynamics were studied by immunohistochemistry and flow cytometry. Expression of regulatory genes at mRNA and protein levels was assessed by real-time PCR and Western blot, respectively. RESULTS: Characteristic splenic architecture is restored within 30 days post-transplantation, consistent with other studies. The monocyte-macrophage system, megakaryocytes, and B lymphocytes show the highest rates, whereas the functional recovery of T cells takes longer. Cross-strain splenic engraftments using B10-GFP donors indicate the recipient-derived cell sources of the recovery. Transplantations of scaffolds populated with splenic stromal cells or without them afforded no restoration of the characteristic splenic architecture. CONCLUSIONS: Allogeneic subcutaneous transplantation of splenic fragments in a mouse model leads to their structural recovery within 30 days, with full reconstitution of the monocyte-macrophage, megakaryocyte and B lymphocyte populations. The circulating hematopoietic cells provide the likely source for the cell composition recovery.


Asunto(s)
Bazo , Esplenectomía , Masculino , Ratones , Animales , Bazo/fisiología , Bazo/trasplante , Trasplante Autólogo , Linfocitos T , Modelos Animales de Enfermedad
2.
Biol. Res ; 56: 15-15, 2023. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1429915

RESUMEN

BACKGROUND: Splenectomy may lead to severe postoperative complications, including sepsis and cancers. A possible solution to this problem is heterotopic autotransplantation of the spleen. Splenic autografts rapidly restore the regular splenic microanatomy in model animals. However, the functional competence of such regenerated autografts in terms of lympho- and hematopoietic capacity remains uncertain. Therefore, this study aimed to monitor the dynamics of B and T lymphocyte populations, the monocyte-macrophage system, and megakaryocytopoiesis in murine splenic autografts. METHODS: The model of subcutaneous splenic engraftment was implemented in C57Bl male mice. Cell sources of functional recovery were studied using heterotopic transplantations from B10-GFP donors to C57Bl recipients. The cellular composition dynamics were studied by immunohistochemistry and flow cytometry. Expression of regulatory genes at mRNA and protein levels was assessed by real-time PCR and Western blot, respectively. RESULTS: Characteristic splenic architecture is restored within 30 days post-transplantation, consistent with other studies. The monocyte-macrophage system, megakaryocytes, and B lymphocytes show the highest rates, whereas the functional recovery of T cells takes longer. Cross-strain splenic engraftments using B10-GFP donors indicate the recipient-derived cell sources of the recovery. Transplantations of scaffolds populated with splenic stromal cells or without them afforded no restoration of the characteristic splenic architecture. CONCLUSIONS: Allogeneic subcutaneous transplantation of splenic fragments in a mouse model leads to their structural recovery within 30 days, with full reconstitution of the monocyte-macrophage, megakaryocyte and B lymphocyte populations. The circulating hematopoietic cells provide the likely source for the cell composition recovery.


Asunto(s)
Animales , Masculino , Ratones , Bazo/fisiología , Bazo/trasplante , Esplenectomía , Trasplante Autólogo , Linfocitos T , Modelos Animales de Enfermedad
3.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077265

RESUMEN

Macrophages are key participants in the maintenance of tissue homeostasis under normal and pathological conditions, and implement a rich diversity of functions. The largest population of resident tissue macrophages is found in the liver. Hepatic macrophages, termed Kupffer cells, are involved in the regulation of multiple liver functionalities. Specific differentiation profiles and functional activities of tissue macrophages have been attributed to the shaping role of the so-called tissue niche microenvironments. The fundamental macrophage niche concept was lately shaken by a flood of new data, leading to a revision and substantial update of the concept, which constitutes the main focus of this review. The macrophage community discusses contemporary evidence on the developmental origins of resident macrophages, notably Kupffer cells and the issues of heterogeneity of the hepatic macrophage populations, as well as the roles of proliferation, cell death and migration processes in the maintenance of macrophage populations of the liver. Special consideration is given to interactions of Kupffer cells with other local cell lineages, including Ito cells, sinusoidal endothelium and hepatocytes, which participate in the maintenance of their phenotypical and functional identity.


Asunto(s)
Macrófagos del Hígado , Macrófagos , Hepatocitos , Humanos , Macrófagos del Hígado/patología , Hígado/metabolismo , Macrófagos/patología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA