Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Sci Rep ; 12(1): 21266, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36481782

RESUMEN

Isotopic and hydrochemical data from lakes provide direct information on catchment response to changing rainfall, evaporation, nutrient cycling, and the health of ecosystems. These techniques have not been widely applied to lakes in the Southern Hemisphere high latitudes, including Southern Ocean Islands (SOIs) experiencing rapid, significant shifts in climate. Historical work has highlighted the localised nature of geochemical drivers in controlling the hydrochemical evolution of lakes, such as geology, sea spray contribution, vegetation, geographical location, and ice cover extent. The role of groundwater in lake hydrology and hydrochemistry has not been identified until now, and its omission will have major implications for interpreting soil-water-air processes affecting lakes. Here we present the first comprehensive, island-wide hydrochemical and isotopic survey of lakes on a SOI. Forty lakes were examined across Macquarie Island, using comparable methods to identify key environmental processes and their geochemical drivers. Methods include stable carbon (δ13CDOC: dissolved organic carbon and δ13CDIC: dissolved inorganic carbon), oxygen (δ18O), hydrogen (δ2H) and strontium isotopic ratios (87Sr/86Sr) in water. These provide essential baseline data for hydrological, biological, and geochemical lake processes. Lakes on the western side of the island are influenced by sea spray aerosols. In general, it was found that lakes at higher elevations are dilute and those located in lower elevation catchments have experienced more water-rock interactions. The hydrochemical and isotopic tracers suggest that lakes in lower elevations contain more terrestrial sourced ions that may be contributed from groundwater. Increasing temperatures and changing rainfall patterns predicted for the region will lead to shifts in nutrient cycles, and impact the island's unique ecosystems. Future research will focus on long-term monitoring to understand seasonal, annual, and long-term variability to test fundamental hypotheses concerning ecosystem function and the consequences of environmental change on SOIs.


Asunto(s)
Ecosistema , Hidrología , Geología , Carbono , Agua
3.
Glob Chang Biol ; 28(22): 6483-6508, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35900301

RESUMEN

Anthropogenic climate change is causing observable changes in Antarctica and the Southern Ocean including increased air and ocean temperatures, glacial melt leading to sea-level rise and a reduction in salinity, and changes to freshwater water availability on land. These changes impact local Antarctic ecosystems and the Earth's climate system. The Antarctic has experienced significant past environmental change, including cycles of glaciation over the Quaternary Period (the past ~2.6 million years). Understanding Antarctica's paleoecosystems, and the corresponding paleoenvironments and climates that have shaped them, provides insight into present day ecosystem change, and importantly, helps constrain model projections of future change. Biological archives such as extant moss beds and peat profiles, biological proxies in lake and marine sediments, vertebrate animal colonies, and extant terrestrial and benthic marine invertebrates, complement other Antarctic paleoclimate archives by recording the nature and rate of past ecological change, the paleoenvironmental drivers of that change, and constrain current ecosystem and climate models. These archives provide invaluable information about terrestrial ice-free areas, a key location for Antarctic biodiversity, and the continental margin which is important for understanding ice sheet dynamics. Recent significant advances in analytical techniques (e.g., genomics, biogeochemical analyses) have led to new applications and greater power in elucidating the environmental records contained within biological archives. Paleoecological and paleoclimate discoveries derived from biological archives, and integration with existing data from other paleoclimate data sources, will significantly expand our understanding of past, present, and future ecological change, alongside climate change, in a unique, globally significant region.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Regiones Antárticas , Suelo , Agua
4.
Nat Commun ; 13(1): 2153, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444183

RESUMEN

Groundwater comprises 95% of the liquid fresh water on Earth and contains a diverse mix of dissolved organic matter (DOM) molecules which play a significant role in the global carbon cycle. Currently, the storage times and degradation pathways of groundwater DOM are unclear, preventing an accurate estimate of groundwater carbon sources and sinks for global carbon budgets. Here we reveal the transformations of DOM in aging groundwater using ultra-high resolution mass spectrometry combined with radiocarbon dating. Long-term anoxia and a lack of photodegradation leads to the removal of oxidised DOM and a build-up of both reduced photodegradable formulae and aerobically biolabile formulae with a strong microbial signal. This contrasts with the degradation pathway of DOM in oxic marine, river, and lake systems. Our findings suggest that processes such as groundwater extraction and subterranean groundwater discharge to oceans could result in up to 13 Tg of highly photolabile and aerobically biolabile groundwater dissolved organic carbon released to surface environments per year, where it can be rapidly degraded. These findings highlight the importance of considering groundwater DOM in global carbon budgets.


Asunto(s)
Materia Orgánica Disuelta , Agua Subterránea , Carbono/análisis , Lagos/química
5.
Biol Rev Camb Philos Soc ; 96(6): 2828-2850, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34747117

RESUMEN

When it comes to the investigation of key ecosystems in the world, we often omit salt from the ecological recipe. In fact, despite occupying almost half of the volume of inland waters and providing crucial services to humanity and nature, inland saline ecosystems are often overlooked in discussions regarding the preservation of global aquatic resources of our planet. As a result, our knowledge of the biological and geochemical dynamics shaping these environments remains incomplete and we are hesitant in framing effective protective strategies against the increasing natural and anthropogenic threats faced by such habitats. Hypersaline lakes, water bodies where the concentration of salt exceeds 35 g/l, occur mainly in arid and semiarid areas resulting from hydrological imbalances triggering the accumulation of salts over time. Often considered the 'exotic siblings' within the family of inland waters, these ecosystems host some of the most extremophile communities worldwide and provide essential habitats for waterbirds and many other organisms in already water-stressed regions. These systems are often highlighted as natural laboratories, ideal for addressing central ecological questions due to their relatively low complexity and simple food web structures. However, recent studies on the biogeochemical mechanisms framing hypersaline communities have challenged this archetype, arguing that newly discovered highly diverse communities are characterised by specific trophic interactions shaped by high levels of specialisation. The main goal of this review is to explore our current understanding of the ecological dynamics of hypersaline ecosystems by addressing four main research questions: (i) why are hypersaline lakes unique from a biological and geochemical perspective; (ii) which biota inhabit these ecosystems and how have they adapted to the high salt conditions; (iii) how do we protect biodiversity from increasing natural and anthropogenic threats; and (iv) which scientific tools will help us preserve hypersaline ecosystems in the future? First, we focus on the ecological characterisation of hypersaline ecosystems, illustrate hydrogeochemical dynamics regulating such environments, and outline key ecoregions supporting hypersaline systems across the globe. Second, we depict the diversity and functional aspects of key taxa found in hypersaline lakes, from microorganisms to plants, invertebrates, waterbirds and upper trophic levels. Next, we describe ecosystem services and discuss possible conservation guidelines. Finally, we outline how cutting-edge technologies can provide new insights into the study of hypersaline ecology. Overall, this review sheds further light onto these understudied ecosystems, largely unrecognised as important sources of unique biological and functional diversity. We provide perspectives for key future research avenues, and advocate that the conservation of hypersaline lakes should not be taken with 'a grain of salt'.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Invertebrados , Lagos
7.
Water Res ; 188: 116422, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33027696

RESUMEN

The polarity and molecular weight of dissolved organic matter (DOM) is an important factor determining the treatability of water for domestic supply. DOM in surface water and groundwater is comprised of a mixture of carbon with varying molecular weight ranges, with its composition driven by DOM sources and processing. Here, we present the largest dataset of chromatographic DOM in surface and groundwater samples (n = 246) using liquid chromatography organic carbon detection (LCOCD). Our data represents four categories (surface water, hyporheic zone water, local groundwater, and regional groundwater) from five different sites across Australia. In all environments, high molecular weight hydrophilic DOM such as biopolymers (BP) and humic substances (HS) are present in surface waters and are processed out of groundwater as it moves from surface water and hyporheic zones into shallow local groundwater and deeper regional groundwaters. This results in a higher percentage of low molecular weight neutrals (LMWN) and hydrophobic organic carbon (HOC) in deeper regional groundwaters. Our findings indicate that the presence of sedimentary organic matter strongly influence the character of surface and groundwater DOM, resulting in groundwater with higher HS aromaticity and molecular weight, and reduced percentage of LMWNs. We also observe highly variable hydrophilic / HOC ratios in groundwater at all sites, with 9.60% and 25.64% of samples at sites containing sedimentary peat layers and non-sedimentary peat sites respectively containing only hydrophilic dissolved organic carbon (DOC). We identify average hydrophilic / HOC ratios of 4.35 ± 3.76 and 7.53 ± 5.32 at sites containing sedimentary peat layers and non-sedimentary peat sites respectively where both hydrophilic DOC and HOC are present. Overall our results suggest that fractured rock and alluvial aquifers in sedimentary organic carbon poor environments may contain DOC which is better suited to ozonation, biologically activated carbon filtration powdered activated carbon, suspended ion exchange treatment or magnetic ion exchange resin since DOC is more hydrophilic and of lower molecular weight and lower aromaticity. Aquifers located near sedimentary organic matter layers may benefit from pre-treatment by coagulation/flocculation, sedimentation and sand filtration which have high removal efficiency for high molecular weight and polar compounds.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Australia , Cromatografía Liquida , Sustancias Húmicas/análisis , Contaminantes Químicos del Agua/análisis
8.
Sci Rep ; 10(1): 18295, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106529

RESUMEN

Chronic kidney disease (CKD) of unknown etiology (CKDu) mostly affects agricultural communities in Central America, South Asia, Africa, but likely also in North America and Australia. One such area with increased CKDu prevalence is the Medawachchiya District Secretariat Division of the Anuradhapura District in the North Central Province of Sri Lanka. Recent research has focused on the presence of various microbial pathogens in drinking water as potential causal or contributing factors to CKDu, yet no study to date has performed a more comprehensive microbial and water chemistry assessment of household wells used for domestic water supply in areas of high CKDu prevalence. In this study, we describe the chemical composition and total microbial content in 30 domestic household wells in the Medawachchiya District Secretariat Division. While the chemical composition in the tested wells mostly lies within standard drinking water limits, except for high levels of fluoride (F), magnesium (Mg), sodium (Na), chloride (Cl) and calcium (Ca) in some samples, we find a frequent presence of cyanotoxin-producing Microcystis, confirming earlier studies in Sri Lanka. Since the total microbial content of drinking water also directly influences the composition of the human gut microbiome, it can be considered an important determinant of health. Several bacterial phyla were previously reported in the gut microbiome of patients with CKD. Using these bacteria phyla to define operational taxonomic units, we found that these bacteria also occur in the microbiome of the sampled well water. Based on available environmental data, our study demonstrates associations between the abundances of these bacteria with geographical distribution, well water temperature and likely fertilizer use in the local surface water catchment area of the individual household wells. Our results reinforce the recommendation that household wells with stagnant or infrequently used water should be purged prior to use for drinking water, bathing and irrigation. The latter is suggested because of the reported potential accumulation of bacterial toxins by agricultural crops. The observation that bacteria previously found in chronic kidney disease patients are also present in household wells requires a more detailed systematic study of both the human gut and drinking water microbiomes in CKDu patients, in relation to disease prevalence and progression.


Asunto(s)
Bacterias/clasificación , Agua Potable/análisis , Insuficiencia Renal Crónica/epidemiología , Contaminantes Químicos del Agua/análisis , Bacterias/aislamiento & purificación , Progresión de la Enfermedad , Agua Potable/química , Agua Potable/microbiología , Microbioma Gastrointestinal , Humanos , Filogenia , Prevalencia , Insuficiencia Renal Crónica/etiología , Sri Lanka/epidemiología , Microbiología del Agua , Pozos de Agua
9.
PLoS One ; 15(8): e0237730, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32857799

RESUMEN

Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota.


Asunto(s)
Ciclo del Carbono , Isótopos de Carbono/análisis , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Microbiota/fisiología , Suelo/química , Australia , Isótopos de Carbono/metabolismo , Código de Barras del ADN Taxonómico , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Agua Subterránea/microbiología , ARN Ribosómico 16S/genética , Lluvia , Salinidad , Microbiología del Suelo , Espectrometría de Fluorescencia
10.
Sci Total Environ ; 745: 140896, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32731068

RESUMEN

Chronic Kidney Disease of unknown aetiology (CKDu) is a major public health concern in dry climatic, agricultural regions of Sri Lanka. The chemistry of groundwater (the main source of drinking water) in the area has been studied extensively, in relation to the occurrence of CKDu. This paper investigates water quality studies published in CKDu affected areas of Sri Lanka and also presents a new data set of 27 hydrochemical and isotopic samples collected from groundwater wells in selected CKDu endemic areas in Sri Lanka. The study outcomes do not provide evidence of pollutants such as heavy metals in groundwater. However, the study identifies elevated concentrations of silica which requires further investigation. Two groups of groundwater have been identified based on the isotopic results suggesting different sources or origins. The available water quality data, including the data from this study, is not sufficient to answer questions on whether the chemistry of groundwater is related to the CKDu occurrence. However, this study identifies the importance of detailed investigation into degradation products of agrochemicals, the organic matter content and the influence of elevate silica concentration in groundwater. The study also provides research directions in the form of isotopic tracers and the frequency of sampling that is needed to capture potential pollutants in future groundwater quality studies in CKDu endemic areas in Sri Lanka.


Asunto(s)
Agua Subterránea , Insuficiencia Renal Crónica/epidemiología , Humanos , Isótopos , Sri Lanka/epidemiología , Calidad del Agua
11.
Nat Commun ; 11(1): 1279, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152271

RESUMEN

Climate change and urbanization can increase pressures on groundwater resources, but little is known about how groundwater quality will change. Here, we use a global synthesis (n = 9,404) to reveal the drivers of dissolved organic carbon (DOC), which is an important component of water chemistry and substrate for microorganisms that control biogeochemical reactions. Dissolved inorganic chemistry, local climate and land use explained ~ 31% of observed variability in groundwater DOC, whilst aquifer age explained an additional 16%. We identify a 19% increase in DOC associated with urban land cover. We predict major groundwater DOC increases following changes in precipitation and temperature in key areas relying on groundwater. Climate change and conversion of natural or agricultural areas to urban areas will decrease groundwater quality and increase water treatment costs, compounding existing constraints on groundwater resources.

12.
Sci Total Environ ; 717: 135105, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31839292

RESUMEN

The isotopic composition of groundwater can be a useful indicator of recharge conditions and may be used as an archive to infer past climate variability. Groundwater from two largely confined aquifers in south-west Australia, recharged at the northernmost extent of the westerly wind belt, can help constrain the palaeoclimate record in this region. We demonstrate that radiocarbon age measurements of dissolved inorganic carbon are appropriate for dating groundwater from the Leederville aquifer and Yarragadee aquifer within the Perth Basin. Variations in groundwater δ18O values with mean residence time were examined using regional and flow line data sets, which were compared. The trends in the regional groundwater data are consistent with the groundwater flow line data supporting the hypothesis that groundwater δ18O is a robust proxy for palaeo-recharge in the Perth Basin. A comparison between modern groundwater and rainfall water isotopes indicates that recharge is biased to months with high volume and/or intense rainfall from the westerly wind circulation and that this has been the case for the last 35 ka. Lower stable water isotope values are interpreted to represent recharge from higher volume and/or more intense rainfall from 35 ka through the Last Glacial Maximum period although potentially modulated by changes in recharge thresholds. The Southern Perth Basin groundwater isotopic record also indicates a trend towards higher volume and/or intense rainfall during the Mid- to Late Holocene. The long-term stable water isotope record provides an understanding of groundwater palaeo-recharge. Knowledge of recharge dynamics over long time scales can be used to improve current water sharing plans and future groundwater model predictions.

13.
Water Res ; 170: 115301, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31765825

RESUMEN

Coastal aquifers provide an important source of water globally. Understanding how groundwater responds to changes in rainfall recharge is important for sustainable development. To this end, we investigate how water isotopes (18O, 2H, 3H) and chloride (Cl) concentrations within an island freshwater lens respond under varying rainfall conditions in a region experiencing climate change. Uniquely, this study presents a three year dataset of groundwater collected seasonally between May 2013 and August 2016 from ten wells. Variation in all tracers was observed. The Cl and tritium (3H) show opposing seasonal variation in some sections of the lens, with higher Cl observed in the austral summer when less rainfall occurs and evapotranspiration is highest. The opposite occurs in the austral winter months when 3H increases from atmospheric input via rainfall recharge, and Cl is diluted. An overall decline in 3H values and enrichment in stable water isotopes over the study period was also observed. This study shows that understanding groundwater of freshwater lenses should not rely on a single sampling campaign because seasonal variability is large. The identification of a dual recharge regime, with contributions from both winter rainfall and episodic events, has important implications for understanding the future fate of the freshwater lens on Rottnest Island. The finding that episodic rainfall is a major contributor to groundwater recharge is important and can only be assessed with a multi-year isotope dataset for groundwater and rainfall.


Asunto(s)
Agua Subterránea , Agua , Monitoreo del Ambiente , Agua Dulce , Isótopos , Pozos de Agua
14.
Water Res ; 169: 115201, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675607

RESUMEN

Dissolved organic matter (DOM) in groundwater is fundamentally important with respect to biogeochemical reactions, global carbon cycling, heavy metal transport, water treatability and potability. One source of DOM to groundwater is from the transport of organic matter from the vadose zone by rainfall recharge. Changes in precipitation patterns associated with natural climate variability and climate change are expected to alter the load and character of organic matter released from these areas, which ultimately impacts on groundwater quality and DOM treatability. In order to investigate potential changes in groundwater DOM character after rainfall recharge, we sampled shallow groundwater from a coastal peat-rich sand aquifer in New South Wales, Australia, during an extended period of low precipitation (average daily precipitation rate < 1.6 mm day-1 over the 8 months prior to sampling), and after two heavy precipitation events (84 mm day-1 and 98 mm day-1 respectively). We assess changes in DOM composition after correcting for dilution by a novel combination of two advanced analytical techniques: liquid chromatography organic carbon detection (LC-OCD) and negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We also assess changes in water chemistry pre- and post-rainfall. Post-rainfall, we show that the dilution-corrected amount of highly aromatic DOM molecular formulae (i.e. those categorised into the groups polyphenolics and condensed aromatics) were 1.7 and 2.0 times higher respectively than in pre-rainfall samples. We attribute this to the flushing of peat-derived DOM from buried organic material into the groundwater. We also identify that periods of low precipitation can lead to low hydrophilic/HOC ratios in groundwater (median = 4.9, n = 14). Redundancy analysis (RDA) was used to compare the HOC fraction with FT-ICR MS compound groups. We show that HOC has a more aromatic character in pre-rainfall samples, and is less similar to the aromatic groups in post-rainfall samples. This suggests that the decline in water-borne hydrophobics observed post-rainfall could be associated with preferential adsorption of the hydrophobic aromatic DOM, making post-rainfall samples less treatable for potable water supply. Post-rainfall we also observe significant increases in arsenic (leading to concentrations greater than 3 times the World Health Organisation drinking water limit of 10 µg / L). Increases in coastal rainfall due to climate change may therefore alter the composition of groundwater DOM in coastal peatland areas in ways that may impact DOM bioavailability, and increase arsenic concentrations, reducing the ease of water treatment for human consumption. To the best of our knowledge, this is the first study to identify the chemical and molecular changes of shallow groundwater DOM pre-rainfall and post-rainfall in a sedimentary organic carbon rich environment through multiple analytical techniques.


Asunto(s)
Agua Subterránea , Arena , Australia , Humanos , Nueva Gales del Sur , Abastecimiento de Agua
15.
Sci Total Environ ; 645: 630-645, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30029138

RESUMEN

This paper presents a continental scale interpretation of δ2H and δ18O in Australian precipitation, incorporating historical GNIP data at seven sites (1962-2002) and 8-12 years of new monthly data from 15 sites from 2003 to 2014. The more than doubling of stations and the significant time series duration allow for an improved analysis of Australian precipitation isotopes. Local meteoric water lines were developed for each site, and for the Australian continent. When the annual precipitation weighted values were used, the Australian meteoric water line was δ2H = 8.3 δ18O + 14.1‰. Precipitation amount was found to be a stronger driver of precipitation isotopes than temperature at most sites, particularly those affected by tropical cyclones and the monsoon. Latitude, elevation and distance from the coast were found to be stronger drivers of spatial variability than temperature or rainfall amount. Annual isoscapes of δ2H, δ18O and deuterium excess were developed, providing an improved tool to estimate precipitation isotope inputs to hydrological systems. Because of the complex climate, weather and oceanic moisture sources affecting Australia, regional groupings were used instead of the climate zone approach and additional data was included to improve the coverage in data poor regions. Regression equations for the isoscape were derived using latitude, altitude and distance from the coast as predictor variables. We demonstrate how this isoscape can be used as a tool for interpreting groundwater recharge processes using examples from across Queensland and New South Wales, including the Murray Darling Basin. Groundwater isotopes at sites where direct local recharge occurs are similar to rainfall, but for inland sites, which are often arid or semi-arid, a disconnect between shallow groundwater and local rainfall is observed; the departure in deuterium excess for these sites increases with aridity and distance from the headwaters where flooding originates.

16.
Sci Total Environ ; 607-608: 771-785, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28711007

RESUMEN

This study investigates the inorganic and organic aspects of the carbon cycle in groundwaters throughout the freshwater lens and transition zone of a carbonate island aquifer and identifies the transformation of carbon throughout the system. We determined 14C and 13C carbon isotope values for both DIC and DOC in groundwaters, and investigated the composition of DOC throughout the aquifer. In combination with hydrochemical and 3H measurements, the chemical evolution of groundwaters was then traced from the unsaturated zone to the deeper saline zone. The data revealed three distinct water types: Fresh (F), Transition zone 1 (T1) and Transition zone 2 (T2) groundwaters. The 3H values in F and T1 samples indicate that these groundwaters are mostly modern. 14CDOC values are higher than 14CDIC values and are well correlated with 3H values. F and T1 groundwater geochemistry is dominated by carbonate mineral recrystallisation reactions that add dead carbon to the groundwater. T2 groundwaters are deeper, saline and characterised by an absence of 3H, lower 14CDOC values and a different DOC composition, namely a higher proportion of Humic Substances relative to total DOC. The T2 groundwaters are suggested to result from either the slow circulation of water within the seawater wedge, or from old remnant seawater caused by past sea level highstands. While further investigations are required to identify the origin of the T2 groundwaters, this study has identified their occurrence and shown that they did not evolve along the same pathway as fresh groundwaters. This study has also shown that a combined approach using 14C and 13C carbon isotope values for both DIC and DOC and the composition of DOC, as well as hydrochemical and 3H measurements, can provide invaluable information regarding the transformation of carbon in a groundwater system and the evolution of fresh groundwater recharge.

17.
Sci Total Environ ; 414: 456-69, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22104381

RESUMEN

The Gnangara Mound and the underlying Perth Basin aquifers are the largest source of groundwater for the southwest of Australia, supplying between 35 and 50% of Perth's potable water (2009-2010). However, declining health of wetlands on the Mound coupled with the reduction in groundwater levels from increased irrigation demands and drier climatic conditions means this resource is experiencing increased pressures. The northern Gnangara is an area where the Yarragadee aquifer occurs at shallow depths (~50 m) and is in direct contact with the superficial aquifer, suggesting the possibility of direct recharge into a generally confined aquifer. Environmental isotopes ((14)C and (3)H) and hydrochemical modelling were used to assess the presence of a recharge 'window' as well as understand the groundwater residence time within different aquifers. Forty-nine groundwater samples were collected from depths ranging from 11 to 311 m below ground surface. The isotopic variation observed in the superficial aquifer was found to be controlled by the different lithologies present, i.e. quartz-rich Bassendean Sand and carbonate-rich sediments of the Ascot Formation. Rainfall recharge into the Bassendean Sand inherits its dissolved inorganic carbon from the soil CO(2). Organic matter throughout the soil profile is degraded by oxidation leading to anoxic/acidic groundwater, which if in contact with the Ascot Formation leads to enhanced dissolution of carbonates. Hydrochemical mass balance modelling showed that carbonate dissolution could contribute 1-2 mmol kg(-1) of carbon to groundwaters recharged through the Ascot Formation. The corrected groundwater residence times of the Yarragadee aquifer in the northern part of the study area ranged from 23 to 35 ka, while waters in the southeastern corner ranged from sub-modern to 2 ka. Groundwater ages increase with distance radiating from the recharge 'window'. This study delineates a recharge 'window' into the commonly presumed confined aquifers of the Perth Basin, highlighting the need for appropriate sustainable management.


Asunto(s)
Radioisótopos de Carbono/análisis , Agua Subterránea/química , Modelos Teóricos , Tritio/análisis , Movimientos del Agua , Abastecimiento de Agua/análisis , Carbonatos/química , Geografía , Fenómenos Geológicos , Espectrometría de Masas , Lluvia , Espectrofotometría Atómica , Factores de Tiempo , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA