Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Br J Nutr ; 107(10): 1482-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21902859

RESUMEN

Dietary lycopene consists mostly of the (all-E) isomer. Upon absorption, (all-E) lycopene undergoes isomerisation into various (Z)-isomers. Because these isomers offer potentially better health benefits than the (all-E) isomer, the aim of the present study was to investigate if the profile of lycopene isomers in intestinal lipoproteins is affected by the profile of lycopene isomers in the meal and by the tomato preparation. Six postprandial, crossover tests were performed in healthy men. Three meals provided about 70 % of the lycopene as (Z)-isomers, either mainly as 5-(Z) or 13-(Z), or as a mixture of 9-(Z) and 13-(Z) lycopene, while three tomato preparations provided lycopene mainly as the (all-E) isomer. Consumption of the 5-(Z) lycopene-rich meal led to a high (60 %) proportion of this isomer in TAG-rich lipoproteins (TRL), indicating a good absorption and/or a low intestinal conversion of this isomer. By contrast, consumption of meals rich in 9-(Z) and 13-(Z) lycopene isomers resulted in a low level of these isomers but high amounts of the 5-(Z) and (all-E) isomers in TRL. This indicates that the 9-(Z) and 13-(Z) isomers were less absorbed or were converted into 5-(Z) and (all-E) isomers. Dietary (Z)-lycopene isomers were, therefore, differently isomerised and released in TRL during their intestinal absorption in men. Consuming the three meals rich in (all-E) lycopene resulted in similar proportions of lycopene isomers in TRL: 60 % (all-E), 20 % 5-(Z), 9 % 13-(Z), 2 % 9-(Z) and 9 % unidentified (Z)-isomers. These results show that the tomato preparation has no impact on the lycopene isomerisation occurring during absorption in humans.


Asunto(s)
Antioxidantes/metabolismo , Carotenoides/metabolismo , Dieta , Manipulación de Alimentos/métodos , Mucosa Intestinal/metabolismo , Extractos Vegetales/metabolismo , Solanum lycopersicum/química , Adulto , Antioxidantes/farmacología , Disponibilidad Biológica , Carotenoides/farmacología , Humanos , Absorción Intestinal , Isomerismo , Lipoproteínas/metabolismo , Licopeno , Masculino , Extractos Vegetales/farmacología , Periodo Posprandial , Triglicéridos/metabolismo , Adulto Joven
2.
Rapid Commun Mass Spectrom ; 25(20): 2989-94, 2011 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-21953953

RESUMEN

Under most physiological conditions, glucose, or carbohydrate (CHO), homeostasis is tightly regulated. In order to mechanistically appraise the origin of circulating glucose (e.g. via either gluconeogenesis, glycogenolysis or oral glucose intake), and its regulation and oxidation, the use of stable isotope tracers is now a well-accepted analytical technique. Methodologically, liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) can replace gas chromatography coupled to combustion-isotope ratio mass spectrometry (GC/C/IRMS) for carrying out compound-specific (13)C isotopic analysis. The LC/IRMS approach is well suited for studying glucose metabolism, since the plasma glucose concentration is relatively high and the glucose can readily undergo chromatography in an aqueous mobile phase. Herewith, we report two main methodological approaches in a single instrument: (1) the ability to measure the isotopic enrichment of plasma glucose to assess the efficacy of CHO-based treatment (cocoa-enriched) during cycling exercise with healthy subjects, and (2) the capacity to carry out bulk isotopic analysis of labeled solutions, which is generally performed with an elemental analyzer coupled to IRMS. For plasma samples measured by LC/IRMS the data show a isotopic precision SD(δ(13)C) and SD(APE) of 0.7 ‰ and 0.001, respectively, with δ(13)C and APE values of -25.48 ‰ and 0.06, respectively, being generated before and after tracer administration. For bulk isotopic measurements, the data show that the presence of organic compounds in the blank slightly affects the δ(13)C values. Despite some analytical limitations, we clearly demonstrate the usefulness of the LC/IRMS especially when (13)C-glucose is required during whole-body human nutritional studies.


Asunto(s)
Glucemia/metabolismo , Cromatografía Liquida/métodos , Análisis de Inyección de Flujo/métodos , Glucosa/metabolismo , Espectrometría de Masas/métodos , Pruebas Respiratorias , Isótopos de Carbono , Deuterio , Ejercicio Físico , Glucosa/administración & dosificación , Humanos , Cinética , Reproducibilidad de los Resultados
3.
Anal Chem ; 82(2): 646-53, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20028023

RESUMEN

Isotope labeled tracers are commonly used to quantify the turnover rates of various metabolic intermediates and yield information regarding physiological regulation. Studies often only consider either one nutritional state (fasted or fed) and/or one question (e.g., measure of lipid or protein turnover). In this article, we consider a novel application combining the global approach of metabonomics with widespread stable isotope labeling as a way of being able to map metabolism in open mammalian systems, an approach we call "isotopomics". A total of 45 15-week-old male Zucker rats were administrated different amounts (from 0.5 to 8 mmol/kg) of sodium [1,2-(13)C(2)] acetate. Plasma samples taken at 1, 4, and 24 h were analyzed with (13)C nuclear magnetic resonance (NMR) and gas chromatography/mass spectrometry (GC/MS) to measure (13)C isotopic enrichment of 39 plasma metabolites across a wide range of compound classes (amino acids, short-chain fatty acids, lactate, glucose, and free fatty acids). Isotopic enrichment from 0.1-7.1 mole percent excess (MPE) for the highest dose could be reliably measured in 16 metabolites, and the kinetics of their (13)C isotopic enrichment are reported. Clustering metabolites based on (13)C kinetic curves enabled highlighting of time dependent patterns of (13)C distribution through the key metabolic pathways. These kinetic and quantitative data were reported into a biochemical map. This type of isotopomic approach for mapping dynamic metabolism in an open system has great potential for advancing our mechanistic knowledge of how different interventions and diseases can impact the metabolic response of animals and humans.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Espectroscopía de Resonancia Magnética/métodos , Acetato de Sodio/metabolismo , Animales , Isótopos de Carbono/metabolismo , Cinética , Masculino , Metabolómica , Análisis Multivariante , Ratas , Acetato de Sodio/sangre , Factores de Tiempo
4.
Rapid Commun Mass Spectrom ; 23(8): 1109-15, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19288537

RESUMEN

Under conditions of high isotopic dilution, e.g. in a tracer study, the ability to determine accurately and quantitatively small variations in isotopic enrichments of differently labelled chemical compounds (e.g. (13)C and (15)N in threonine) in a single run by gas chromatography/mass spectrometry (GC/MS) is desirable but remains a technological challenge. Here, we report a new, rapid and simple GC/MS method for simultaneously measuring the isotopic enrichments of doubly labelled threonine ([U(13)C] and (15)N) with isotopic enrichment lower than 1.5 Molar Percent Excess (MPE). The long-term reproducibility measured was around 0.09 MPE for both tracers (throughout a 6 week period). The intra-day repeatability was lower than 0.05 and 0.06 MPE for [U(13)C]-Thr and (15)N-Thr, respectively. To calculate both isotopic enrichments, two modes of calculations were used: one based on work by Rosenblatt et al. in 1992 and the other one using a matrix approach. Both methods gave similar results (ANOVA, P >0.05) with close precision for each mode of calculation. The GC/MS method was then used to investigate the differential utilization of threonine in different organs according to its route of administration in minipigs after administration of both tracers. In plasma samples, the lowest isotopic enrichment measured between two successive time points was at 0.01 and 0.02 MPE for [U(13)C]-Thr and (15)N-Thr, respectively. Moreover, the accuracy of GC/MS (13)C-isotopic enrichment measured was validated by analyzing the same plasma samples by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Statistical analysis showed that both techniques gave the same results (ANOVA, P >0.05). This new GC/MS method offers the possibility to measure (13)C- and (15)N-isotopic enrichments with higher throughput, and using a lower amount of sample, than using GC/C/IRMS.


Asunto(s)
Isótopos de Carbono/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Isótopos de Nitrógeno/química , Treonina/sangre , Animales , Cromatografía de Gases/métodos , Espectrometría de Masas/métodos , Reproducibilidad de los Resultados , Porcinos , Porcinos Enanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA