Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893334

RESUMEN

Thiazolin-4-ones and their derivatives represent important heterocyclic scaffolds with various applications in medicinal chemistry. For that reason, the synthesis of two 5-substituted thiazolidin-4-one derivatives was performed. Their structure assignment was conducted by NMR experiments (2D-COSY, 2D-NOESY, 2D-HSQC and 2D-HMBC) and conformational analysis was conducted through Density Functional Theory calculations and 2D-NOESY. Conformational analysis showed that these two molecules adopt exo conformation. Their global minimum structures have two double bonds (C=N, C=C) in Z conformation and the third double (C=N) in E. Our DFT results are in agreement with the 2D-NMR measurements. Furthermore, the reaction isomerization paths were studied via DFT to check the stability of the conformers. Finally, some potential targets were found through the SwissADME platform and docking experiments were performed. Both compounds bind strongly to five macromolecules (triazoloquinazolines, mglur3, Jak3, Danio rerio HDAC6 CD2, acetylcholinesterase) and via SwissADME it was found that these two molecules obey Lipinski's Rule of Five.


Asunto(s)
Conformación Molecular , Simulación del Acoplamiento Molecular , Tiazolidinas , Tiazolidinas/química , Tiazolidinas/síntesis química , Isomerismo , Animales , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Pez Cebra , Espectroscopía de Resonancia Magnética , Janus Quinasa 3/antagonistas & inhibidores , Janus Quinasa 3/metabolismo , Janus Quinasa 3/química , Estructura Molecular
2.
Commun Chem ; 7(1): 14, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233506

RESUMEN

The structural diversity and tunability of the capsid proteins (CPs) of various icosahedral and rod-shaped viruses have been well studied and exploited in the development of smart hybrid nanoparticles. However, the potential of CPs of the wide-spread flexuous filamentous plant viruses remains to be explored. Here, we show that we can control the shape, size, RNA encapsidation ability, symmetry, stability and surface functionalization of nanoparticles through structure-based design of CP from potato virus Y (PVY). We provide high-resolution insight into CP-based self-assemblies, ranging from large polymorphic or monomorphic filaments to smaller annular, cubic or spherical particles. Furthermore, we show that we can prevent CP self-assembly in bacteria by fusion with a cleavable protein, enabling controlled nanoparticle formation in vitro. Understanding the remarkable structural diversity of PVY CP not only provides possibilities for the production of biodegradable nanoparticles, but may also advance future studies of CP's polymorphism in a biological context.

3.
J Chem Phys ; 159(13)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37782253

RESUMEN

The application of terahertz radiation has been shown to affect both protein structure and cellular function. As the key to such structural changes lies in the dynamic response of a protein, we focus on the susceptibility of the protein's internal dynamics to mechanical stress induced by acoustic pressure waves. We use the open-boundary molecular dynamics method, which allows us to simulate the protein exposed to acoustic waves. By analyzing the dynamic fluctuations of the protein subunits, we demonstrate that the protein is highly susceptible to acoustic waves with frequencies corresponding to those of the internal protein vibrations. This is confirmed by changes in the compactness of the protein structure. As the amplitude of the pressure wave increases, even larger deviations from average positions and larger changes in protein compactness are observed. Furthermore, performing the mode-projection analysis, we show that the breathing-like character of collective modes is enhanced at frequencies corresponding to those used to excite the protein.


Asunto(s)
Acústica , Proteínas , Proteínas/química , Movimiento (Física) , Vibración , Simulación de Dinámica Molecular
4.
Nanomaterials (Basel) ; 13(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37686895

RESUMEN

Linde type A (LTA) aluminophosphate is a promising candidate for an energy storage material used for low-temperature solar and waste-heat management. The mechanism of reversible water adsorption, which is the basis for potential industrial applications, is still not clear. In this paper, we provide mechanistic insight into various aspects of the hydration process using molecular modeling methods. Building on accurate DFT calculations and available experimental data, we first refine the existing empirical force-field used in subsequent classical molecular dynamics simulations that captures the relevant physics of the water binding process. We succeed in fully reproducing the experimentally determined X-ray structure factors and use them to estimate the number of water molecules present in the fully hydrated state of the material. Furthermore, we show that the translational and orientational mobility of the confined water is significantly reduced and resembles the dynamics of glassy systems.

5.
Front Immunol ; 14: 1181020, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545534

RESUMEN

Perforin is a pore-forming protein that plays a crucial role in the immune system by clearing virus-infected or tumor cells. It is released from cytotoxic granules of immune cells and forms pores in targeted lipid membranes to deliver apoptosis-inducing granzymes. It is a very cytotoxic protein and is therefore adapted not to act in producing cells. Its activity is regulated by the requirement for calcium ions for optimal activity. However, the exact affinity of perforin for calcium ions has not yet been determined. We conducted a molecular dynamics simulation in the absence or presence of calcium ions that showed that binding of at least three calcium ions is required for stable perforin binding to the lipid membrane. Biophysical studies using surface plasmon resonance and microscale thermophoresis were then performed to estimate the binding affinities of native human and recombinant mouse perforin for calcium ions. Both approaches showed that mouse perforin has a several fold higher affinity for calcium ions than that of human perforin. This was attributed to a particular residue, tryptophan at position 488 in mouse perforin, which is replaced by arginine in human perforin. This represents an additional mechanism to control the activity of human perforin.


Asunto(s)
Calcio , Resonancia por Plasmón de Superficie , Ratones , Animales , Humanos , Perforina/metabolismo , Calcio/farmacología , Iones , Lípidos
6.
J Phys Chem B ; 127(33): 7231-7243, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37556834

RESUMEN

Proteins are natural polymers that play an essential role in both living organisms and biotechnological applications. During certain bioprocessing steps, they can be exposed to significant mechanical stress induced by, for example, shear flow or sonication, resulting in reduced therapeutic efficacy, aggregation, or even a loss of activity. For this reason, there is a need to understand and determine the susceptibility of the protein activity to the experienced mechanical stress. To acquire this knowledge, it is necessary to study the rotational dynamics of the protein. Commonly, the rotational dynamics of soft molecules is interpreted based on a theoretical analysis performed in an inertial laboratory frame. However, the obtained angular velocity mixes pure rotations and vibrations with angular momentum, consequently lacking a clear dynamical interpretation. On the other hand, the use of the noninertial internal Eckart frame allows the determination of pure angular velocity as it minimizes the coupling between the rotational and vibrational degrees of freedom. In the present work, by conducting open-boundary molecular dynamics simulations and exploiting the Eckart frame formalism, we study the rotational dynamics of a small protein under the shear flow of various strengths. Our results show that the angular velocity increases nonlinearly with increasing shear rate. Furthermore, the protein gains vibrational angular momentum at higher shear rates, which is reflected in the higher angular velocity computed by employing the Eckart frame formalism and confirmed by analysis of the contributions to the total kinetic energy of the biomolecule.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Modelos Moleculares , Estructura Terciaria de Proteína , Temperatura
7.
Molecules ; 28(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37513169

RESUMEN

Sodium glucose cotransporters (SGLTs) are cotransporters located in the cell membrane of various epithelia that uptake glucose or galactose and sodium into the cell. Its founding member, SGLT1, represents a major pharmaceutically relevant target protein for development of new antidiabetic drugs, in addition to being the target protein of the oral rehydration therapy. Previous studies focused primarily on the transport of substrates and ions, while our study focuses on the effect of water transport. SGLT1 is implicated in the absorption of water, yet the exact mechanism of how the water absorption occurs or how inhibitors of SGLT1, such as phlorizin, are able to inhibit it is still unclear. Here we present a comprehensive study based on molecular dynamics simulations with the aim of determining the influence of the energetic and dynamic properties of SGLT1, which are influenced by selected sugar uptake inhibitors on water permeation.


Asunto(s)
Carbohidratos , Azúcares , Transporte Biológico , Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo , Agua/metabolismo
8.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445706

RESUMEN

The human sodium-glucose cotransporter protein (SGLT1) is an important representative of the sodium solute symporters belonging to the secondary active transporters that are critical to the homeostasis of sugar, sodium, and water in the cell. The underlying transport mechanism of SGLT1 is based on switching between inward- and outward-facing conformations, known as the alternating access model, which is crucial for substrate transport, and has also been postulated for water permeation. However, the nature of water transport remains unclear and is disputed along the passive and active transport, with the latter postulating the presence of the pumping effect. To better examine the water transport in SGLT1, we performed a series of equilibrium all-atom molecular dynamics simulations, totaling over 6 µs of sample representative conformational states of SGLT1 and its complexes, with the natural substrates, ions, and inhibitors. In addition to elucidating the basic physical factors influencing water permeation, such as channel openings and energetics, we focus on dynamic flexibility and its relationship with domain motion. Our results clearly demonstrate a dependence of instantaneous water flux on the channel opening and local water diffusion in the channel, strongly supporting the existence of a passive water transport in SGLT1. In addition, a strong correlation found between the local water diffusion and protein domain motion, resembling the "rocking-bundle" motion, reveals its facilitating role in the water transport.


Asunto(s)
Transportador 1 de Sodio-Glucosa , Simportadores , Humanos , Transporte Biológico , Transportador 1 de Sodio-Glucosa/metabolismo , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Simportadores/metabolismo , Sodio/metabolismo , Agua/química , Glucosa/metabolismo
9.
Genome Biol Evol ; 14(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36256613

RESUMEN

Pore-forming toxins are an important component of the venom of many animals. Actinoporins are potent cytolysins that were first detected in the venom of sea anemones; however, they are occasionally found in animals other than cnidarians and are expanded in a few predatory gastropods. Here, we report the presence of 27 unique actinoporin-like genes with monophyletic origin in Mytilus galloprovincialis, which we have termed mytiporins. These mytiporins exhibited a remarkable level of molecular diversity and gene presence-absence variation, which warranted further studies aimed at elucidating their functional role. We structurally and functionally characterized mytiporin-1 and found significant differences from the archetypal actinoporin fragaceatoxin C. Mytiporin-1 showed weaker permeabilization activity, no specificity towards sphingomyelin, and weak activity in model lipid systems with negatively charged lipids. In contrast to fragaceatoxin C, which forms octameric pores, functional mytiporin-1 pores on negatively charged lipid membranes were hexameric. Similar hexameric pores were observed for coluporin-26 from Cumia reticulata and a conoporin from Conus andremenezi. This indicates that also other molluscan actinoporin-like proteins differ from fragaceatoxin C. Although the functional role of mytiporins in the context of molluscan physiology remains to be elucidated, the lineage-specific gene family expansion event that characterizes mytiporins indicates that strong selective forces acted on their molecular diversification. Given the tissue distribution of mytiporins, this process may have broadened the taxonomic breadth of their biological targets, which would have important implications for digestive processes or mucosal immunity.


Asunto(s)
Venenos de Cnidarios , Mytilus , Anémonas de Mar , Animales , Mytilus/genética , Venenos de Cnidarios/genética , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Lípidos
10.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445705

RESUMEN

The KV10.1 voltage-gated potassium channel is highly expressed in 70% of tumors, and thus represents a promising target for anticancer drug discovery. However, only a few ligands are known to inhibit KV10.1, and almost all also inhibit the very similar cardiac hERG channel, which can lead to undesirable side-effects. In the absence of the structure of the KV10.1-inhibitor complex, there remains the need for new strategies to identify selective KV10.1 inhibitors and to understand the binding modes of the known KV10.1 inhibitors. To investigate these binding modes in the central cavity of KV10.1, a unique approach was used that allows derivation and analysis of ligand-protein interactions from molecular dynamics trajectories through pharmacophore modeling. The final molecular dynamics-derived structure-based pharmacophore model for the simulated KV10.1-ligand complexes describes the necessary pharmacophore features for KV10.1 inhibition and is highly similar to the previously reported ligand-based hERG pharmacophore model used to explain the nonselectivity of KV10.1 pore blockers. Moreover, analysis of the molecular dynamics trajectories revealed disruption of the π-π network of aromatic residues F359, Y464, and F468 of KV10.1, which has been reported to be important for binding of various ligands for both KV10.1 and hERG channels. These data indicate that targeting the KV10.1 channel pore is also likely to result in undesired hERG inhibition, and other potential binding sites should be explored to develop true KV10.1-selective inhibitors as new anticancer agents.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/química , Bloqueadores de los Canales de Potasio/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Descubrimiento de Drogas , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Ligandos , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico
11.
Comput Struct Biotechnol J ; 19: 2938-2949, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136093

RESUMEN

The Nerve Growth Factor (NGF) neurotrophin acts in the maintenance and growth of neuronal populations. Despite the detailed knowledge of NGF's role in neuron physiology, the structural and mechanistic determinants of NGF bioactivity modulated by essential endogenous ligands are still lacking. We present the results of an integrated structural and advanced computational approach to characterize the extracellular ATP-NGF interaction. We mapped by NMR the interacting surface and ATP orientation on NGF and revealed the functional role of this interaction in the binding to TrkA and p75NTR receptors by SPR. The role of divalent ions was explored in conjunction with ATP. Our results pinpoint ATP as a likely transient molecular modulator of NGF signaling, in health and disease states.

12.
Phys Chem Chem Phys ; 22(32): 18132-18140, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32761039

RESUMEN

The interaction between water and biomacromolecules is of fundamental interest in biophysics, biochemistry and physical chemistry. By combining neutron scattering and molecular dynamics simulations on a perdeuterated protein at a series of hydration levels, we demonstrated that the translational motion of water is slowed down more significantly than its rotation, when water molecules approach the protein molecule. Further analysis of the simulation trajectories reveals that the observed decoupling results from the fact that the translational motion of water is more correlated over space and more retarded by the charged/polar residues and spatial confinement on the protein surface, than the rotation. Moreover, around the stable protein residues (with smaller atomic fluctuations), water exhibits more decoupled dynamics, indicating a connection between the observed translation-rotation decoupling in hydration water and the local stability of the protein molecule.


Asunto(s)
Proteínas/química , Agua/química , Simulación de Dinámica Molecular , Difracción de Neutrones , Rotación
13.
Front Mol Biosci ; 7: 145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754617

RESUMEN

K-Ras is one of the most frequently mutated oncogenes in human tumor cells. It consists of a well-conserved globular catalytic domain and a flexible tail-like hypervariable region (HVR) at its C-terminal end. It plays a key role in signaling networks in proliferation, differentiation, and survival, undergoing a conformational switch between the active and inactive states. It is regulated through the GDP-GTP cycle of the inactive GDP-bound and active GTP-bound states. Here, without imposing any prior constraints, we mapped the interaction pattern between the catalytic domain and the HVR using Molecular Dynamics with excited Normal Modes (MDeNM) starting from an initially extended HVR conformation for both states. Our sampling captured similar interaction patterns in both GDP- and GTP-bound states with shifted populations depending on the bound nucleotide. In the GDP-bound state, the conformations where the HVR interacts with the effector lobe are more populated than in the GTP-bound state, forming a buried thus autoinhibited catalytic site; in the GTP-bound state conformations where the HVR interacts with the allosteric lobe are more populated, overlapping the α3/α4 dimerization interface. The interaction of the GTP with Switch I and Switch II is stronger than that of the GDP in line with a decrease in the fluctuation upon GTP binding.

14.
Biochim Biophys Acta Gen Subj ; 1864(4): 129537, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31972294

RESUMEN

Molecular solutes are known to have a strong effect on the structural and dynamical properties of the surrounding water. In our recent study (PNAS, 114, 322 (2017)) we have identified the presence of strengthened water hydrogen bonds near hydrophobic solutes by using both IR spectroscopy and ab-initio molecular dynamics simulations. The water molecules involved in the enhanced hydrogen bonding have been shown to display extensive structural ordering and restricted mobility. We observed that an individual pair of water molecules can make stronger hydrogen bond to each other if it is not surrounded by intercalating water molecules. Here we present compelling simulation results which unravel a simple mechanistic picture of the emergence of the hydrogen bond (HB) strengthening around solvated methane. We show explicitly that actual absence of water molecules within the excluded volume due to the hydrophobic molecule assures smaller residual torque on neighboring water molecules enabling the formation of stronger HBs between them.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Metano/química , Agua/química , Teoría Funcional de la Densidad , Enlace de Hidrógeno , Hidróxidos/química , Simulación de Dinámica Molecular
15.
Sci Adv ; 5(7): eaaw3808, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31328164

RESUMEN

Potato virus Y (PVY) is among the most economically important plant pathogens. Using cryoelectron microscopy, we determined the near-atomic structure of PVY's flexuous virions, revealing a previously unknown lumenal interplay between extended carboxyl-terminal regions of the coat protein units and viral RNA. RNA-coat protein interactions are crucial for the helical configuration and stability of the virion, as revealed by the unique near-atomic structure of RNA-free virus-like particles. The structures offer the first evidence for plasticity of the coat protein's amino- and carboxyl-terminal regions. Together with mutational analysis and in planta experiments, we show their crucial role in PVY infectivity and explain the ability of the coat protein to perform multiple biological tasks. Moreover, the high modularity of PVY virus-like particles suggests their potential as a new molecular scaffold for nanobiotechnological applications.


Asunto(s)
Proteínas de la Cápside/química , Modelos Moleculares , Potyvirus/fisiología , Conformación Proteica , Secuencia de Aminoácidos , Sitios de Unión , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Enfermedades de las Plantas/virología , Potyvirus/ultraestructura , Unión Proteica , ARN Viral/química , ARN Viral/metabolismo , Relación Estructura-Actividad , Virión
16.
Front Pharmacol ; 8: 417, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713270

RESUMEN

Cholesterol is essential for development, growth, and maintenance of organisms. Mutations in cholesterol biosynthetic genes are embryonic lethal and few polymorphisms have been so far associated with pathologies in humans. Previous analyses show that lanosterol 14α-demethylase (CYP51A1) from the late part of cholesterol biosynthesis has only a few missense mutations with low minor allele frequencies and low association with pathologies in humans. The aim of this study is to evaluate the role of amino acid changes in the natural missense mutations of the hCYP51A1 protein. We searched SNP databases for existing polymorphisms of CYP51A1 and evaluated their effect on protein function. We found rare variants causing detrimental missense mutations of CYP51A1. Some missense variants were also associated with a phenotype in humans. Two missense variants have been prepared for testing enzymatic activity in vitro but failed to produce a P450 spectrum. We performed molecular modeling of three selected missense variants to evaluate the effect of the amino acid substitution on potential interaction with its substrate and the obligatory redox partner POR. We show that two of the variants, R277L and especially D152G, have possibly lower binding potential toward obligatory redox partner POR. D152G and R431H have also potentially lower affinity toward the substrate lanosterol. We evaluated the potential effect of damaging variants also using data from other in vitro CYP51A1 mutants. In conclusion, we propose to include damaging CYP51A1 variants into personalized diagnostics to improve genetic counseling for certain rare disease phenotypes.

17.
Proc Natl Acad Sci U S A ; 114(2): 322-327, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028244

RESUMEN

Hydrophobicity plays an important role in numerous physicochemical processes from the process of dissolution in water to protein folding, but its origin at the fundamental level is still unclear. The classical view of hydrophobic hydration is that, in the presence of a hydrophobic solute, water forms transient microscopic "icebergs" arising from strengthened water hydrogen bonding, but there is no experimental evidence for enhanced hydrogen bonding and/or icebergs in such solutions. Here, we have used the redshifts and line shapes of the isotopically decoupled IR oxygen-deuterium (O-D) stretching mode of HDO water near small purely hydrophobic solutes (methane, ethane, krypton, and xenon) to study hydrophobicity at the most fundamental level. We present unequivocal and model-free experimental proof for the presence of strengthened water hydrogen bonds near four hydrophobic solutes, matching those in ice and clathrates. The water molecules involved in the enhanced hydrogen bonds display extensive structural ordering resembling that in clathrates. The number of ice-like hydrogen bonds is 10-15 per methane molecule. Ab initio molecular dynamics simulations have confirmed that water molecules in the vicinity of methane form stronger, more numerous, and more tetrahedrally oriented hydrogen bonds than those in bulk water and that their mobility is restricted. We show the absence of intercalating water molecules that cause the electrostatic screening (shielding) of hydrogen bonds in bulk water as the critical element for the enhanced hydrogen bonding around a hydrophobic solute. Our results confirm the classical view of hydrophobic hydration.

18.
Biochim Biophys Acta ; 1850(1): 159-68, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450179

RESUMEN

BACKGROUND: Cyclodextrins (CDs) in combination with therapeutic proteins and other bioactive compounds have been proposed as candidates that show enhanced chemical and enzymatic stability, better absorption, slower plasma clearance and improved dose-response curves or immunogenicity. As a result, an important number of therapeutic complexes between cyclodextrins and bioactive compounds capable to control several diseases have been developed. RESULTS: In this article, the synthesis and the structural study of a conjugate between a luteinizing hormone-releasing hormone (LHRH) analogue, related to the treatment of hormone dependent cancer and fertility, and modified ß-cyclodextrin residue are presented. The results show that both the phenyl group of tyrosine (Tyr) as well as the indole group of tryptophan (Trp) can be encapsulated inside the cyclodextrin cavity. Solution NMR experiments provide evidence that these interactions take place intramolecularly and not intermolecularly. CONCLUSIONS: The study of a LHRH analogue conjugated with modified ß-cyclodextrin via high field NMR and MD experiments revealed the existence of intramolecular interactions that could lead to an improved drug delivery. GENERAL SIGNIFICANCE: NMR in combination with MD simulation is of great value for a successful rational design of peptide-cyclodextrin conjugates showing stability against enzymatic proteolysis and a better pharmacological profile.


Asunto(s)
Hormona Liberadora de Gonadotropina/síntesis química , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , beta-Ciclodextrinas/química , Sitios de Unión , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Hormona Liberadora de Gonadotropina/administración & dosificación , Hormona Liberadora de Gonadotropina/análogos & derivados , Humanos , Espectroscopía de Resonancia Magnética , Modelos Químicos , Estructura Molecular , Unión Proteica
19.
Comb Chem High Throughput Screen ; 17(8): 652-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24875271

RESUMEN

The dissolution of the antihypertensive AT1 antagonist olmesartan in methanol generates in situ a new highly bioactive methyl ether analogue via SN1 mechanism involving an intramolecular proton transfer from carboxyl to hydroxyl group. Theoretical calculations confirmed the thermodynamic control preference of methyl ether versus the antagonistic product methyl ester. Α facile synthetic method for olmesartan methyl ether from olmesartan or olmesartan medoxomil is also described. Interestingly, the introduction of the methyl group to olmesartan did not alter its pharmacological properties. This observation opens new avenues in the synthesis of novel drugs, since hydroxyl and carboxylate groups have an orthogonal relationship in many drugs.


Asunto(s)
Antagonistas de Receptores de Angiotensina/química , Imidazoles/química , Tetrazoles/química , Antagonistas de Receptores de Angiotensina/síntesis química , Antihipertensivos/síntesis química , Antihipertensivos/química , Imidazoles/síntesis química , Modelos Teóricos , Estructura Molecular , Tetrazoles/síntesis química
20.
J Biol Chem ; 289(23): 16588-600, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24748621

RESUMEN

Mycobacteria harbor unique proteins that regulate protein lysine acylation in a cAMP-regulated manner. These lysine acyltransferases from Mycobacterium smegmatis (KATms) and Mycobacterium tuberculosis (KATmt) show distinctive biochemical properties in terms of cAMP binding affinity to the N-terminal cyclic nucleotide binding domain and allosteric activation of the C-terminal acyltransferase domain. Here we provide evidence for structural features in KATms that account for high affinity cAMP binding and elevated acyltransferase activity in the absence of cAMP. Structure-guided mutational analysis converted KATms from a cAMP-regulated to a cAMP-dependent acyltransferase and identified a unique asparagine residue in the acyltransferase domain of KATms that assists in the enzymatic reaction in the absence of a highly conserved glutamate residue seen in Gcn5-related N-acetyltransferase-like acyltransferases. Thus, we have identified mechanisms by which properties of similar proteins have diverged in two species of mycobacteria by modifications in amino acid sequence, which can dramatically alter the abundance of conformational states adopted by a protein.


Asunto(s)
Aciltransferasas/metabolismo , AMP Cíclico/metabolismo , Mycobacterium/metabolismo , Aciltransferasas/química , Regulación Alostérica , Modelos Moleculares , Mycobacterium/clasificación , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA