Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nature ; 620(7973): 299-302, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558847

RESUMEN

The presence of perennially wet surface environments on early Mars is well documented1,2, but little is known about short-term episodicity in the early hydroclimate3. Post-depositional processes driven by such short-term fluctuations may produce distinct structures, yet these are rarely preserved in the sedimentary record4. Incomplete geological constraints have led global models of the early Mars water cycle and climate to produce diverging results5,6. Here we report observations by the Curiosity rover at Gale Crater indicating that high-frequency wet-dry cycling occurred in early Martian surface environments. We observe exhumed centimetric polygonal ridges with sulfate enrichments, joined at Y-junctions, that record cracks formed in fresh mud owing to repeated wet-dry cycles of regular intensity. Instead of sporadic hydrological activity induced by impacts or volcanoes5, our findings point to a sustained, cyclic, possibly seasonal, climate on early Mars. Furthermore, as wet-dry cycling can promote prebiotic polymerization7,8, the Gale evaporitic basin may have been particularly conducive to these processes. The observed polygonal patterns are physically and temporally associated with the transition from smectite clays to sulfate-bearing strata, a globally distributed mineral transition1. This indicates that the Noachian-Hesperian transition (3.8-3.6 billion years ago) may have sustained an Earth-like climate regime and surface environments favourable to prebiotic evolution.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Ciclo Hidrológico , Agua , Arcilla/química , Medio Ambiente Extraterrestre/química , Minerales/análisis , Minerales/química , Sulfatos/análisis , Sulfatos/química , Humedad , Agua/análisis , Origen de la Vida , Exobiología
3.
Anal Chim Acta ; 1209: 339837, 2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35569848

RESUMEN

The SuperCam instrument, onboard the Perseverance rover (Mars 2020 mission) is designed to perform remote analysis on the Martian surface employing several spectroscopic techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR), Time-Resolved Fluorescence (TRF) and Visible and Infrared (VISIR) reflectance. In addition, SuperCam also acquires high-resolution images using a color remote micro-imager (RMI) as well as sounds with its microphone. SuperCam has three main subsystems, the Mast Unit (MU) where the laser for chemical analysis and collection optics are housed, the Body Unit (BU) where the different spectrometers are located inside the rover, and the SuperCam Calibration Target (SCCT) located on the rover's deck to facilitate calibration tests at similar ambient conditions as the analyzed samples. To perform adequate calibrations on Mars, the 22 mineral samples included in the complex SCCT assembly must have a very homogeneous distribution of major and minor elements. The analysis and verification of such homogeneity for the 5-6 replicates of the samples included in the SCCT has been the aim of this work. To verify the physic-chemical homogeneity of the calibration targets, micro Energy Dispersive X-ray Fluorescence (EDXRF) imaging was first used on the whole surface of the targets, then the relative abundances of the detected elements were computed on 20 randomly distributed areas of 100 × 100 µm. For those targets showing a positive Raman response, micro-Raman spectroscopy imaging was performed on the whole surface of the targets at a resolution of 100 × 100 µm. The %RSD values (percent of relative standard deviation of mean values) for the major elements measured with EDXRF were compared with similar values obtained by two independent LIBS set-ups at spot sizes of 300 µm in diameter. The statistical analysis showed which elements were homogeneously distributed in the 22 mineral targets of the SCCT, providing their uncertainty values for further calibration. Moreover, nine of the 22 targets showed a good Raman response and their mineral distributions were also studied. Those targets can be also used for calibration purposes of the Raman part of SuperCam using the wavenumbers of their main Raman bands proposed in this work.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Calibración , Medio Ambiente Extraterrestre/química , Minerales/análisis , Espectrometría Raman/métodos
4.
Nature ; 605(7911): 653-658, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35364602

RESUMEN

Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2-4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s-1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.

5.
Space Sci Rev ; 216(8): 138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281235

RESUMEN

SuperCam is a highly integrated remote-sensing instrumental suite for NASA's Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.

6.
J Geophys Res Planets ; 125(9): e2019JE006289, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32999802

RESUMEN

The Mars Science Laboratory (MSL) Curiosity rover is exploring the Murray formation, a sequence of heterolithic mudstones and sandstones recording fluvial deltaic and lake deposits that comprise over 350 m of sedimentary strata within Gale crater. We examine >4,500 Murray formation bedrock points, employing recent laboratory calibrations for ChemCam laser-induced breakdown spectroscopy H measurements at millimeter scale. Bedrock in the Murray formation has an interquartile range of 2.3-3.1 wt.% H2O, similar to measurements using the Dynamic Albedo of Neutrons and Sample Analysis at Mars instruments. However, specific stratigraphic intervals include high H targets (6-18 wt.% H2O) correlated with Si, Mg, Ca, Mn, or Fe, indicating units with opal, hydrated Mg sulfates, hydrated Ca sulfates, Mn-enriched units, and akageneite or other iron oxyhydroxides, respectively. One stratigraphic interval with higher hydrogen is the Sutton Island unit and Blunts Point unit contact, where higher hydrogen is associated with Fe-rich, Ca-rich, and Mg-rich points. A second interval with higher hydrogen occurs in the Vera Rubin ridge portion of the Murray formation, where higher hydrogen is associated with Fe-rich, Ca-rich, and Si-rich points. We also observe trends in the H signal with grain size, separate from chemical variation, whereby coarser-grained rocks have higher hydrogen. Variability in the hydrogen content of rocks points to a history of water-rock interaction at Gale crater that included changes in lake water chemistry during Murray formation deposition and multiple subsequent groundwater episodes.

7.
Geophys Res Lett ; 46(19): 10754-10763, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31894167

RESUMEN

The Mars Science Laboratory Curiosity rover is traversing a sequence of stratified sedimentary rocks in Gale crater that contain varied eolian, fluviodeltaic, and lake deposits, with phyllosilicates, iron oxides, and sulfate salts. Here, we report the chloride salt distribution along the rover traverse. Chlorine is detected at low levels (<3 wt.%) in soil and rock targets with multiple MSL instruments. Isolated fine-scale observations of high chlorine (up to ≥15 wt.% Cl), detected using the ChemCam instrument, are associated with elevated Na2O and interpreted as halite grains or cements in bedrock. Halite is also interpreted at the margins of veins and in nodular, altered textures. We have not detected halite in obvious evaporitic layers. Instead, its scattered distribution indicates that chlorides emplaced earlier in particular members of the Murray formation were remobilized and reprecipitated by later groundwaters within Murray formation mudstones and in diagenetic veins and nodules.

8.
J Geophys Res Planets ; 122(12): 2510-2543, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29497589

RESUMEN

The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 µm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 µm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.

9.
Science ; 341(6153): 1238670, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24072924

RESUMEN

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

10.
Science ; 341(6153): 1239505, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24072928

RESUMEN

The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA