Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(12): e32704, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988577

RESUMEN

Chlorella vulgaris is a microalga rich in proteins with potential applications in food and feed industries. However, the presence of a cellulose-containing cell wall, which is a major barrier to protein extraction, together with fibroproteinaceous complexes, limits the bioaccessibility of nutritional and bioactive proteins and peptides from C. vulgaris biomass. Therefore, this study aimed to evaluate the effect of different mechanical/physical pre-treatments (bead milling, extrusion, freeze-drying, heating, microwave and sonication) combined or not with enzymatic treatments (commercial trypsin and pancreatin) on protein extraction and peptide formation from a C. vulgaris suspension. The amount of total protein and peptides released to the supernatant was quantified by Bradford and o-phthaldialdehyde assays, respectively. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis was used to analyse the extracted protein fractions. The results showed that extrusion caused a 3-fold increase in total peptides (p < 0.001) compared to no-pretreatment, and trypsin increased peptides formed in bead-milled (p = 0.020) and freeze-dried (p = 0.021) microalga relative to those pre-treatments alone. Some pre-treatments, such as bead milling and microwave, were effective in releasing specific protein fractions, particularly those from 32 to 40 kDa (up to 1.2-fold), compared to control. Pancreatin combined with bead milling decreased 32 to 40 kDa- and 26 kDa-protein fractions (p < 0.010) compared with the sole use of mechanical treatment, whereas the same enzyme mixture associated with microwave produced a similar result for 26 kDa-protein fraction (p = 0.023). Pancreatin also effectively reduced the total protein fraction released after pre-treatment with sonication (p = 0.013). These findings suggest that combining different pre-treatments and enzymatic treatments could improve protein extraction from C. vulgaris biomass, providing a useful approach for the development of sustainable protein sources. The present results highlight the need for further studies to assess the efficacy of extrusion in improving the bioaccessibility of C. vulgaris proteins in monogastric animals' diets.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38890812

RESUMEN

Ulva lactuca, a green seaweed, may be an alternative source of nutrients and bioactive compounds for weaned piglets. However, it has a recalcitrant cell wall rich in a sulphated polysaccharide - ulvan - that is indigestible to monogastrics. The objective of this study was to evaluate the effect of dietary incorporation of 7% U. lactuca, combined with carbohydrases supplementation (commercial carbohydrase mixture or recombinant ulvan lyase), on growth performance, nutrient digestibility and gut health parameters (morphology and microbiota) of weaned piglets. The experiment was conducted over 14 days using 40 weaned piglets randomly allocated to one of four experimental diets: a control diet based on wheat-maize-soybean meal, a diet with 7% U. lactuca replacing the control diet (UL), a diet with UL supplemented with 0.005% Rovabio® Excel AP, and a diet with UL supplemented with 0.01% of a recombinant ulvan lyase. The dietary treatments had no major effects on growth performance, nitrogen balance and gut content variables, as well as histological measurements. Contrarily, dry matter and organic matter digestibility decreased with dietary seaweed inclusion, while hemicellulose digestibility increased, suggesting a high fermentability of this cell wall fraction independently of carbohydrases supplementation. Some beneficial microbial populations increased as a consequence of enzymatic supplementation (e.g., Prevotella), while seaweed diets as a whole led to an increased abundance of Shuttleworthia, Anaeroplasma and Lachnospiraceae_NK3A20_group, all related with a healthier gut. It also decreased Lactobacillus when compared to controls, which is possibly related to increased bioavailability of seaweed zinc. This study indicates that, under these experimental conditions, up to 7% dietary U. lactuca has no detrimental effect on piglet growth, despite decreasing acid detergent fibre digestibility. Carbohydrases supplementation of Ulva diets is not required at this incorporation level.

3.
Sci Rep ; 14(1): 4589, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409238

RESUMEN

Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC-MS) approach. Feeding piglets with seaweed and enzyme supplementation resulted in reduced macronutrient availability, leading to protein degradation through the proteasome (PSMD2), with resulting amino acids being utilized as an energy source (GOT2, IDH3B). Moreover, mineral element accumulation may have contributed to increased oxidative stress, evident from elevated levels of antioxidant proteins like catalase, as a response to maintaining tissue homeostasis. The upregulation of the gene AQP7, associated with the osmotic stress response, further supports these findings. Consequently, an increase in chaperone activity, including HSP90, was required to repair damaged proteins. Our results suggest that enzymatic supplementation may exacerbate the effects observed from feeding U. lactuca alone, potentially due to side effects of cell wall degradation during digestion.


Asunto(s)
Algas Comestibles , Polisacáridos , Proteómica , Algas Marinas , Ulva , Animales , Porcinos , Perfilación de la Expresión Génica , Suplementos Dietéticos , Músculos
4.
J Anim Physiol Anim Nutr (Berl) ; 105(2): 247-259, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33210778

RESUMEN

The effect of Spirulina (Arthrospira platensis), individually or in combination with two commercial carbohydrases, in piglet diets was assessed on growth performance, nutrient digestibility and meat quality traits. Forty post-weaned male piglets from Large White × Landrace sows crossed with Pietrain boars with an initial live weight of 12.0 ± 0.89 kg were used. Piglets were assigned to one of four dietary treatments (n = 10): cereal and soya bean meal base diet (control), base diet with 10% Spirulina (SP), SP diet supplemented with 0.005% Rovabio® Excel AP (SP + R) and SP diet supplemented with 0.01% lysozyme (SP + L). Animals were slaughtered after a 4-week experimental period. Growth performance was negatively affected by the incorporation of Spirulina in the diets, with an average decrease of 9.1% on final weight, in comparison with control animals. Total tract apparent digestibility (TTAD) of crude protein was higher (p < .05) in the control group than in other groups. In addition, lysozyme increased TTAD of crude fat and acid detergent fibre, relative to the SP and control groups, respectively. In addition, the incorporation of Spirulina, individually and supplemented with enzymes, did not impair meat quality traits. Surprisingly, no protective effect against lipid oxidation was observed with the inclusion of Spirulina in pork after 7 days of storage. This study indicates that growth performance of post-weaning piglets was impaired by the incorporation of 10% Spirulina in the diets, which is mediated by an increase in digesta viscosity and a lower protein digestibility, as a consequence of the resistance of microalga proteins to the action of endogenous peptidases. In addition, it also indicates that lysozyme, in contrast to Rovabio® Excel AP, is efficient in the degradation of Spirulina cell wall in piglet's intestine. However, the digestion of proteins liberated by Spirulina cell wall disruption is still a challenge.


Asunto(s)
Spirulina , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Masculino , Carne/análisis , Nutrientes , Porcinos , Destete
5.
BMC Vet Res ; 9: 118, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23767408

RESUMEN

BACKGROUND: Both genetic background and finishing system can alter fat deposition, thus indicating their influence on adipogenic and lipogenic factors. However, the molecular mechanisms underlying fat deposition and fatty acid composition in beef cattle are not fully understood. This study aimed to assess the effect of breed and dietary silage level on the expression patterns of key genes controlling lipid metabolism in subcutaneous adipose tissue (SAT) and longissimus lumborum (LL) muscle of cattle. To that purpose, forty bulls from two genetically diverse Portuguese bovine breeds with distinct maturity rates, Alentejana and Barrosã, were selected and fed either low (30% maize silage/70% concentrate) or high silage (70% maize silage/30% concentrate) diets. RESULTS: The results suggested that enhanced deposition of fatty acids in the SAT from Barrosã bulls, when compared to Alentejana, could be due to higher expression levels of lipogenesis (SCD and LPL) and ß-oxidation (CRAT) related genes. Our results also indicated that SREBF1 expression in the SAT is increased by feeding the low silage diet. Together, these results point out to a higher lipid turnover in the SAT of Barrosã bulls when compared to Alentejana. In turn, lipid deposition in the LL muscle is related to the expression of adipogenic (PPARG and FABP4) and lipogenic (ACACA and SCD) genes. The positive correlation between ACACA expression levels and total lipids, as well trans fatty acids, points to ACACA as a major player in intramuscular deposition in ruminants. Moreover, results reinforce the role of FABP4 in intramuscular fat development and the SAT as the major site for lipid metabolism in ruminants. CONCLUSIONS: Overall, the results showed that SAT and LL muscle fatty acid composition are mostly dependent on the genetic background. In addition, dietary silage level impacted on muscle lipid metabolism to a greater extent than on that of SAT, as evaluated by gene expression levels of adipogenic and lipogenic factors. Moreover, the response to diet composition evaluated through mRNA levels and fatty acid composition showed interesting differences between Alentejana and Barrosã bulls. These findings provide evidence that the genetic background should be taken into account while devising diet-based strategies to manipulate fatty acid composition of beef cattle tissues.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Regulación de la Expresión Génica/fisiología , Metabolismo de los Lípidos/fisiología , Ensilaje , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Cruzamiento , Bovinos/genética , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/genética , Metabolismo de los Lípidos/genética , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Grasa Subcutánea/química , Grasa Subcutánea/metabolismo , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA