Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Clin Invest ; 133(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36656645

RESUMEN

Treatment options for alcohol use disorders (AUDs) have minimally advanced since 2004, while the annual deaths and economic toll have increased alarmingly. Phosphodiesterase type 4 (PDE4) is associated with alcohol and nicotine dependence. PDE4 inhibitors were identified as a potential AUD treatment using a bioinformatics approach. We prioritized a newer PDE4 inhibitor, apremilast, as ideal for repurposing (i.e., FDA approved for psoriasis, low incidence of adverse events, excellent safety profile) and tested it using multiple animal strains and models, as well as in a human phase IIa study. We found that apremilast reduced binge-like alcohol intake and behavioral measures of alcohol motivation in mouse models of genetic risk for drinking to intoxication. Apremilast also reduced excessive alcohol drinking in models of stress-facilitated drinking and alcohol dependence. Using site-directed drug infusions and electrophysiology, we uncovered that apremilast may act to lessen drinking in mice by increasing neural activity in the nucleus accumbens, a key brain region in the regulation of alcohol intake. Importantly, apremilast (90 mg/d) reduced excessive drinking in non-treatment-seeking individuals with AUD in a double-blind, placebo-controlled study. These results demonstrate that apremilast suppresses excessive alcohol drinking across the spectrum of AUD severity.


Asunto(s)
Alcoholismo , Inhibidores de Fosfodiesterasa 4 , Psoriasis , Humanos , Ratones , Animales , Talidomida/farmacología , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Psoriasis/tratamiento farmacológico , Etanol , Consumo de Bebidas Alcohólicas/genética
2.
Mol Psychiatry ; 27(11): 4611-4623, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36198764

RESUMEN

Alcohol withdrawal is a clinically important consequence and potential driver of Alcohol Use Disorder. However, susceptibility to withdrawal symptoms, ranging from craving and anxiety to seizures and delirium, varies greatly. Selectively bred Withdrawal Seizure-Prone (WSP) and Seizure-Resistant (WSR) mice are an animal model of differential susceptibility to withdrawal and phenotypes with which withdrawal severity correlates. To identify innate drivers of alcohol withdrawal severity, we performed a multi-omic study of the WSP and WSR lines and F2 mice derived from them, using genomic, genetic, and transcriptomic analyses. Genes implicated in seizures and epilepsy were over-represented among those that segregated between WSP and WSR mice and that displayed differential expression in F2 mice high and low in withdrawal. Quantitative trait locus (QTL) analysis of ethanol withdrawal convulsions identified several genome-wide significant loci and pointed to genes that modulate potassium channel function and neural excitability. Perturbations of expression of genes involved in synaptic transmission, including GABAergic and glutamatergic genes, were prominent in prefrontal cortex transcriptome. Expression QTL (eQTL) analysis fine mapped genes within the peak ethanol withdrawal QTL regions. Genetic association analysis in human subjects provided converging evidence for the involvement of those genes in severity of alcohol withdrawal and dependence. Our results reveal a polygenic network and neural signaling pathways contributing to ethanol withdrawal seizures and related phenotypes that overlap with genes modulating epilepsy and neuronal excitability.


Asunto(s)
Alcoholismo , Epilepsia , Síndrome de Abstinencia a Sustancias , Ratones , Humanos , Animales , Síndrome de Abstinencia a Sustancias/genética , Alcoholismo/genética , Convulsiones/genética , Etanol
3.
Addict Biol ; 27(5): e13212, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36001437

RESUMEN

The high-drinking-in-the-dark (HDID) lines of mice were selectively bred for achieving high blood alcohol levels in the drinking-in-the-dark (DID) task and have served as a unique genetic risk model for binge-like alcohol intake. However, little is known about their willingness to consume other addictive drugs. Here, we examined (a) whether the HDID-1 and HDID-2 lines of mice would voluntarily consume midazolam, methamphetamine, morphine and nicotine in a DID test and (b) whether the HDID lines differ from their founders, heterogeneous stock/Northport (HS/NPT), in consumption levels of these drugs at the concentrations tested. Separate groups of HDID-1, HDID-2 and HS/NPT mice were given 4 days of access to each drug, using the single-bottle, limited-access DID paradigm. Male and female mice of both HDID lines consumed all four offered drugs. We observed no genotype differences in 40 µg/ml methamphetamine intake, but significant differences in nicotine, midazolam and morphine intake. Both HDID lines drank significantly more (150 µg/ml) midazolam than their founders, providing strong support for a shared genetic contribution to binge ethanol and midazolam intake. HDID-2 mice, but not HDID-1 mice, consumed more morphine (700 µg/ml) and more nicotine across a range of concentrations than HS/NPT mice. These results demonstrate that the HDID mice can be utilized for tests of voluntary drug consumption other than ethanol and highlight potentially important differences between HDID lines in risk for elevated drug intake.


Asunto(s)
Metanfetamina , Nicotina , Consumo de Bebidas Alcohólicas/genética , Animales , Etanol , Femenino , Masculino , Metanfetamina/farmacología , Ratones , Ratones Endogámicos C57BL , Midazolam/farmacología , Morfina/farmacología , Nicotina/farmacología
4.
Addict Biol ; 27(1): e13074, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34227188

RESUMEN

We have modelled genetic risk for binge-like drinking by selectively breeding High Drinking in the Dark-1 and -2 (HDID-1 and HDID-2) mice for their propensity to reach intoxicating blood alcohol levels (BALs) after binge-like drinking in a single bottle, limited access paradigm. Interestingly, in standard two-bottle choice (2BC) tests for continuously available alcohol versus water, HDID mice show modest levels of preference. This indicates some degree of independence of the genetic contributions to risk for binge-like and sustained, continuous access drinking. We had few data where the drinking in the dark (DID) tests of binge-like drinking had been repeatedly performed, so we serially offered multiple DID tests to see whether binge-like drinking escalated. It did not. We also asked whether HDID mice would escalate their voluntary intake with prolonged exposure to alcohol 2BC. They did not. Lastly, we assessed whether an alcohol deprivation effect (ADE) developed. ADE is a temporary elevation in drinking typically observed after a period of abstinence from sustained access to alcohol choice. With repetition, these periods of ADE sometimes have led to more sustained elevations in drinking. We therefore asked whether repeated ADE episodes would elevate choice drinking in HDID mice. They did not. After nearly 500 days of alcohol access, the intake of HDID mice remained stable. We conclude that a genetically-enhanced high risk for binge-like drinking is not sufficient to yield alterations in long-term alcohol intake.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/genética , Animales , Oscuridad , Etanol/sangre , Masculino , Ratones , Modelos Animales
5.
Alcohol ; 93: 45-56, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33556460

RESUMEN

The High Drinking in the Dark mouse lines (HDID-1 and HDID-2) were selectively bred to achieve high blood ethanol concentrations (BECs) in the Drinking in the Dark (DID) task, a widely used model of binge-like intake of 20% ethanol. There are several components that differentiate DID from other animal models of ethanol intake: time of day of testing, length of ethanol access, single-bottle access, and individual housing. Here, we sought to determine how some of these individual factors contribute to the high ethanol intake observed in HDID mice. HDID-1, HDID-2, and non-selected HS/NPT mice were tested in a series of DID experiments where one of the following factors was manipulated: length of ethanol access, fluid choice, number of ethanol bottles, and housing condition. We observed that 1) HDID mice achieve intoxicating BECs in DID, even when they are group-housed; 2) HDID mice continue to show elevated ethanol intake relative to HS/NPT mice during an extended access session, but this is most apparent during the first 4 h of access; and 3) offering a water choice during DID prevents elevated intake in the HDID-1 mice, but not necessarily in HDID-2 mice. Together, these results suggest that the lack of choice in the DID paradigm, together with the length of ethanol access, are important factors contributing to elevated ethanol intake in the HDID mice. These results further suggest important differences between the HDID lines in response to procedural manipulations of housing condition and ethanol bottle number in the DID paradigm, highlighting the distinct characteristics that each of these lines possess, despite being selectively bred for the same phenotype.


Asunto(s)
Consumo de Bebidas Alcohólicas , Animales , Etanol , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Brain Sci ; 11(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557285

RESUMEN

Alcohol use disorder (AUD) is a devastating psychiatric disorder that has significant wide-reaching effects on individuals and society. Selectively bred mouse lines are an effective means of exploring the genetic and neuronal mechanisms underlying AUD and such studies are translationally important for identifying treatment options. Here, we report on behavioral characterization of two replicate lines of mice that drink to intoxication, the High Drinking in the Dark (HDID)-1 and -2 mice, which have been selectively bred (20+ generations) for the primary phenotype of reaching high blood alcohol levels (BALs) during the drinking in the dark (DID) task, a binge-like drinking assay. Along with their genetically heterogenous progenitor line, Hs/Npt, we tested these mice on: DID and drinking in the light (DIL); temporal drinking patterns; ethanol sensitivity, through loss of righting reflex (LORR); and operant self-administration, including fixed ratio (FR1), fixed ratio 3:1 (FR3), extinction/reinstatement, and progressive ratio (PR). All mice consumed more ethanol during the dark than the light and both HDID lines consumed more ethanol than Hs/Npt during DIL and DID. In the dark, we found that the HDID lines achieved high blood alcohol levels early into a drinking session, suggesting that they exhibit front loading like drinking behavior in the absence of the chronicity usually required for such behavior. Surprisingly, HDID-1 (female and male) and HDID-2 (male) mice were more sensitive to the intoxicating effects of ethanol during the dark (as determined by LORR), while Hs/Npt (female and male) and HDID-2 (female) mice appeared less sensitive. We observed lower HDID-1 ethanol intake compared to either HDID-2 or Hs/Npt during operant ethanol self-administration. There were no genotype differences for either progressive ratio responding, or cue-induced ethanol reinstatement, though the latter is complicated by a lack of extinguished responding behavior. Taken together, these findings suggest that genes affecting one AUD-related behavior do not necessarily affect other AUD-related behaviors. Moreover, these findings highlight that alcohol-related behaviors can also differ between lines selectively bred for the same phenotype, and even between sexes within those same line.

7.
Neurosci Insights ; 15: 2633105520975412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33294845

RESUMEN

High Drinking in the Dark (HDID-1) mice represent a unique genetic risk model of binge-like drinking and a novel means of screening potential pharmacotherapies to treat alcohol use disorders (AUDs). We tested the effects of tacrolimus (0, 0.5, 1, and 2 mg/kg), sirolimus (0, 5, 10, and 20 mg/kg), palmitoylethanolamide (PEA; 0, 75, 150, and 225 mg/kg), and secukinumab (0, 5, 20, and 60 mg/kg) on binge-like ethanol intake (2-day, "Drinking in the Dark" [DID]) and blood alcohol levels (BALs) in HDID-1 mice. Tacrolimus reduced ethanol intake and BALs. Tacrolimus had no effect on water intake, but reduced saccharin intake. There was no effect of sirolimus, PEA, or secukinumab on ethanol intake or BALs. These results compare and contrast with previous work addressing these compounds or their targeted mechanisms of action on ethanol drinking, highlighting the importance of screening a wide range of models and genotypes to inform the role of neuroimmune signaling in AUDs.

8.
Alcohol Clin Exp Res ; 44(5): 1025-1036, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32154593

RESUMEN

BACKGROUND: Chronic alcohol exposure can alter glucocorticoid receptor (GR) function in some brain areas that promotes escalated and compulsive-like alcohol intake. GR antagonism can prevent dependence-induced escalation in drinking, but very little is known about the role of GR in regulating high-risk nondependent alcohol intake. Here, we investigate the role of GR in regulating binge-like drinking and aversive responses to alcohol in the High Drinking in the Dark (HDID-1) mice, which have been selectively bred for high blood ethanol (EtOH) concentrations (BECs) in the Drinking in the Dark (DID) test, and in their founder line, the HS/NPT. METHODS: In separate experiments, male and female HDID-1 mice were administered one of several compounds that inhibited GR or its negative regulator, FKBP51 (mifepristone [12.5, 25, 50, 100 mg/kg], CORT113176 [20, 40, 80 mg/kg], and SAFit2 [10, 20, 40 mg/kg]) during a 2-day DID task. EtOH consumption and BECs were measured. EtOH conditioned taste and place aversion (CTA and CPA, respectively) were measured in separate HDID-1 mice after mifepristone administration to assess GR's role in regulating the conditioned aversive effects of EtOH. Lastly, HS/NPT mice were administered CORT113176 during DID to assess whether dissimilar effects from those of HDID-1 would be observed, which could suggest that selective breeding had altered sensitivity to the effects of GR antagonism on binge-like drinking. RESULTS: GR antagonism (with both mifepristone and CORT113176) selectively reduced binge-like EtOH intake and BECs in the HDID-1 mice, while inhibition of FKBP51 did not alter intake or BECs. In contrast, GR antagonism had no effect on EtOH intake or BECs in the HS/NPT mice. Although HDID-1 mice exhibit attenuated EtOH CTA, mifepristone administration did not enhance the aversive effects of EtOH in either a CTA or CPA task. CONCLUSION: These data suggest that the selection process increased sensitivity to GR antagonism on EtOH intake in the HDID-1 mice, and support a role for the GR as a genetic risk factor for high-risk alcohol intake.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Etanol/administración & dosificación , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/fisiología , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/genética , Animales , Agentes Aversivos , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/prevención & control , Femenino , Isoquinolinas/farmacología , Masculino , Ratones , Mifepristona/farmacología , Pirazoles/farmacología , Receptores de Glucocorticoides/genética , Proteínas de Unión a Tacrolimus/antagonistas & inhibidores
9.
Brain Behav Immun Health ; 4: 100061, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34589846

RESUMEN

Alcohol use disorders (AUDs) are prevalent, and are characterized by binge-like drinking, defined by patterns of focused drinking where dosages ingested in 2-4 â€‹h reach intoxicating blood alcohol levels (BALs). Current medications are few and compliance with the relatively rare prescribed usage is low. Hence, novel and more effective medications are needed. We developed a mouse model of genetic risk for binge drinking (HDID: High Drinking in the Dark mice) by selectively breeding for high BALs after binge drinking. A transcriptional analysis of HDID brain tissue with RNA-Seq implicated neuroinflammatory mechanisms, and, more specifically extracellular matrix genes, including those encoding matrix metalloproteinases (MMPs). Prior experiments from other groups have shown that the tetracycline derivatives doxycycline, minocycline, and tigecycline, reduce binge drinking in inbred C57BL/6J mice. We tested these three compounds in female and male HDID mice and found that all three reduced DID and BAL. They had drug-specific effects on intake of water or saccharin in the DID assay. Thus, our results show that the effectiveness of synthetic tetracycline derivatives as potential therapeutic agents for AUDs is not limited to the single C57BL/6J genotype previously targeted, but extends to a mouse model of a population at high risk for AUDs.

10.
Alcohol Clin Exp Res ; 44(2): 553-566, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31853996

RESUMEN

BACKGROUND: Rodent models of high alcohol drinking offer opportunities to better understand factors for alcohol use disorders (AUD) and test potential treatments. Selective breeding was carried out to create 2 unique High Drinking in the Dark (HDID-1, HDID-2) mouse lines that represent models of genetic risk for binge-like drinking. A number of studies have indicated that neuroimmune genes are important for regulation of alcohol drinking. We tested whether compounds shown to reduce drinking in other models also reduce alcohol intake in these unique genetic lines. METHODS: We report tests of gabapentin, tesaglitazar, fenofibrate, caffeic acid phenethyl ester (CAPE), ibrutinib, and rolipram. Although these compounds have different mechanisms of action, they have all been shown to reduce inflammatory responses. We evaluated effects of these compounds on alcohol intake. In order to facilitate comparison with previously published findings for some compounds, we employed similar schedules that were previously used for that compound. RESULTS: Gabapentin increased ethanol (EtOH) binge-like alcohol drinking in female HDID-1 and HS/NPT mice. Tesaglitazar and fenofibrate did not alter 2-bottle choice (2BC) drinking in male HDID-1 or HS/NPT mice. However, tesaglitazar had no effect on DID EtOH intake but reduced blood alcohol levels (BAL), and fenofibrate increased DID intake with no effects on BAL. CAPE had no effect on EtOH intake. Ibrutinib reduced intake in female HDID-1 in initial testing, but did not reduce intake in a second week of testing. Rolipram reduced DID intake and BALs in male and female HDID-1, HDID-2, and HS/NPT mice. CONCLUSIONS: A number of compounds shown to reduce EtOH drinking in other models, and genotypes are not effective in HDID mice or their genetically heterogeneous founders, HS/NPT. The most promising compound was the PDE4 inhibitor, rolipram. These results highlight the importance of assessing generalizability when rigorously testing compounds for therapeutic development.


Asunto(s)
Intoxicación Alcohólica/tratamiento farmacológico , Intoxicación Alcohólica/inmunología , Sistemas de Liberación de Medicamentos/métodos , Neuroinmunomodulación/inmunología , Rolipram/administración & dosificación , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/inmunología , Intoxicación Alcohólica/genética , Alcanosulfonatos/administración & dosificación , Animales , Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/inmunología , Relación Dosis-Respuesta a Droga , Femenino , Fenofibrato/administración & dosificación , Gabapentina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos , Ratones Transgénicos , Neuroinmunomodulación/efectos de los fármacos , Fenilpropionatos/administración & dosificación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
11.
Brain Sci ; 9(1)2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609665

RESUMEN

Two independent lines of High Drinking in the Dark (HDID-1, HDID-2) mice have been bred to reach high blood alcohol levels after a short period of binge-like ethanol drinking. Male mice of both lines were shown to have reduced sensitivity to develop a taste aversion to a novel flavor conditioned by ethanol injections as compared with their unselected HS/NPT founder stock. We have subsequently developed inbred variants of each line. The current experiments established that reduced ethanol-conditioned taste aversion is also seen in the inbred variants, in both males and females. In other experiments, we asked whether HDID mice would ingest sufficient doses of ethanol to lead to a conditioned taste aversion upon retest. Different manipulations were used to elevate consumption of ethanol on initial exposure. Access to increased ethanol concentrations, to multiple tubes of ethanol, and fluid restriction to increase thirst motivation all enhanced initial drinking of ethanol. Each condition led to reduced intake the next day, consistent with a mild conditioned taste aversion. These experiments support the conclusion that one reason contributing to the willingness of HDID mice to drink to the point of intoxication is a genetic insensitivity to the aversive effects of ethanol.

12.
Alcohol Clin Exp Res ; 42(8): 1454-1465, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29786871

RESUMEN

BACKGROUND: Transcriptional differences between heterogeneous stock mice and high drinking-in-the-dark selected mouse lines have previously been described based on microarray technology coupled with network-based analysis. The network changes were reproducible in 2 independent selections and largely confined to 2 distinct network modules; in contrast, differential expression appeared more specific to each selected line. This study extends these results by utilizing RNA-Seq technology, allowing evaluation of the relationship between genetic risk and transcription of noncoding RNA (ncRNA); we additionally evaluate sex-specific transcriptional effects of selection. METHODS: Naïve mice (N = 24/group and sex) were utilized for gene expression analysis in the ventral striatum; the transcriptome was sequenced with the Illumina HiSeq platform. Differential gene expression and the weighted gene co-expression network analysis were implemented largely as described elsewhere, resulting in the identification of genes that change expression level or (co)variance structure. RESULTS: Across both sexes, we detect selection effects on the extracellular matrix and synaptic signaling, although the identity of individual genes varies. A majority of nc RNAs cluster in a single module of relatively low density in both the male and female network. The most strongly differentially expressed transcript in both sexes was Gm22513, a small nuclear RNA with unknown function. Associated with selection, we also found a number of network hubs that change edge strength and connectivity. At the individual gene level, there are many sex-specific effects; however, at the annotation level, results are more concordant. CONCLUSIONS: In addition to demonstrating sex-specific effects of selection on the transcriptome, the data point to the involvement of extracellular matrix genes as being associated with the binge drinking phenotype.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Ritmo Circadiano , Oscuridad , ARN no Traducido/fisiología , ARN/fisiología , Selección Genética/genética , Animales , Conducta Animal , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , RNA-Seq , Factores Sexuales , Transcriptoma/genética
13.
Alcohol ; 68: 19-35, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29427828

RESUMEN

Despite acceptance that risk for alcohol-use disorder (AUD) has a large genetic component, the identification of genes underlying various components of risk for AUD has been hampered in humans, in part by the heterogeneity of expression of the phenotype. One aspect of AUD is physical dependence. Alcohol withdrawal is a serious consequence of alcohol dependence with multiple symptoms, many of which are seen in multiple species, and can be experienced over a wide-ranging time course. In the present three studies, we developed a battery of withdrawal tests in mice, examining behavioral symptoms from multiple domains that could be measured over time. To permit eventual use of the battery in different strains of mice, we used male and female mice of a genetically heterogeneous stock developed from intercrossing eight inbred strains. Withdrawal symptoms were assessed using commonly used tests after administration of ethanol in vapor for 72 continuous hours. We found significant effects of ethanol withdrawal versus air-breathing controls on nearly all symptoms, spanning 4 days following ethanol vapor inhalation. Withdrawal produced hypothermia, greater neurohyperexcitability (seizures and tremor), anxiety-like behaviors using an apparatus (such as reduced transitions between light and dark compartments), anhedonia (reduced sucrose preference), Straub tail, backward walking, and reductions in activity; however, there were no changes in thermal pain sensitivity, hyper-reactivity to handling, or anxiety-like emergence behaviors in other apparatus. Using these data, we constructed a refined battery of withdrawal tests. Individual differences in severity of withdrawal among different tests were weakly correlated at best. This battery should be useful for identifying genetic influences on particular withdrawal behaviors, which should reflect the influences of different constellations of genes.


Asunto(s)
Conducta Animal , Depresores del Sistema Nervioso Central , Etanol , Síndrome de Abstinencia a Sustancias/psicología , Administración por Inhalación , Convulsiones por Abstinencia de Alcohol/genética , Animales , Ansiedad/inducido químicamente , Ansiedad/psicología , Ataxia/inducido químicamente , Ataxia/psicología , Depresores del Sistema Nervioso Central/administración & dosificación , Depresores del Sistema Nervioso Central/sangre , Depresión/psicología , Etanol/administración & dosificación , Etanol/sangre , Femenino , Individualidad , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Dimensión del Dolor/efectos de los fármacos , Especificidad de la Especie , Síndrome de Abstinencia a Sustancias/genética
14.
Neuropsychopharmacology ; 43(6): 1257-1266, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29251283

RESUMEN

Transcriptome-based drug discovery has identified new treatments for some complex diseases, but has not been applied to alcohol use disorder (AUD) or other psychiatric diseases, where there is a critical need for improved pharmacotherapies. High Drinking in the Dark (HDID-1) mice are a genetic model of AUD risk that have been selectively bred (from the HS/Npt line) to achieve intoxicating blood alcohol levels (BALs) after binge-like drinking. We compared brain gene expression of HDID-1 and HS/Npt mice, to determine a molecular signature for genetic risk for high intensity, binge-like drinking. Using multiple computational methods, we queried LINCS-L1000 (Library of Integrated Network-Based Cellular Signatures), a database containing gene expression signatures of thousands of compounds, to predict candidate drugs with the greatest potential to decrease alcohol consumption. Our analyses predicted novel compounds for testing, many with anti-inflammatory properties, providing further support for a neuroimmune mechanism of excessive alcohol drinking. We validated the top 2 candidates in vivo as a proof-of-concept. Terreic acid (a Bruton's tyrosine kinase inhibitor) and pergolide (a dopamine and serotonin receptor agonist) robustly reduced alcohol intake and BALs in HDID-1 mice, providing the first evidence for transcriptome-based drug discovery to target an addiction trait. Effective drug treatments for many psychiatric diseases are lacking, and the emerging tools and approaches outlined here offer researchers studying complex diseases renewed opportunities to discover new or repurpose existing compounds and expedite treatment options.


Asunto(s)
Disuasivos de Alcohol/farmacología , Consumo Excesivo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Descubrimiento de Drogas/métodos , Perfilación de la Expresión Génica , Animales , Animales no Consanguíneos , Consumo Excesivo de Bebidas Alcohólicas/genética , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Expresión Génica , Perfilación de la Expresión Génica/métodos , Predisposición Genética a la Enfermedad , Masculino , Ratones , Pergolida/farmacología , Prueba de Estudio Conceptual , Quinonas/farmacología , Transcriptoma
15.
Pharmacol Biochem Behav ; 160: 55-62, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28827047

RESUMEN

BACKGROUND: There is a serious public health need for better understanding of alcohol use disorder disease mechanisms and for improved treatments. At this writing, only three drugs are approved by the Food and Drug Administration as medications to treat alcohol use disorders - disulfiram, naltrexone, and acamprosate. Binge drinking is a form of abusive alcohol drinking defined by the NIAAA as a drinking to blood alcohol levels (BALs)>0.08% during a period of approximately 2h. To model genetic risk for binge-like drinking, we have used selective breeding to create a unique animal model, High Drinking in the Dark (HDID) mice. Behavioral characterization of HDID mice has revealed that HDID mice exhibit behavioral impairment after drinking, withdrawal after a single binge-drinking session, and escalate their intake in response to induction of successive cycles of dependence. Notably, HDID mice do not exhibit altered tastant preference or alcohol clearance rates. We therefore asked whether drugs of known clinical relevance could modulate binge-like ethanol drinking in HDID mice, reasoning that this characterization of HDID responses should inform future use of this genetic animal model for screening and development of novel potential therapeutics. METHODS: We tested the efficacy of acamprosate and naltrexone to reduce binge-like drinking in HDID mice. Additionally, we tested the GABAB receptor agonist, baclofen, based on recent pre-clinical and clinical studies demonstrating that it reduces alcohol drinking. We elected not to include disulfiram due to its more limited clinical usage. Mice were tested after acute doses of drugs in the limited-access Drinking in the Dark (DID) paradigm. RESULTS: HDID mice were sensitive to the effects of acamprosate and baclofen, but not naltrexone. Both drugs reduced binge-like drinking. However, naltrexone failed to reduce drinking in HDID mice. Thus, HDID mice may represent a useful model for screening novel compounds.


Asunto(s)
Baclofeno/uso terapéutico , Consumo Excesivo de Bebidas Alcohólicas/prevención & control , Naltrexona/uso terapéutico , Taurina/análogos & derivados , Acamprosato , Animales , Oscuridad , Modelos Animales de Enfermedad , Etanol/administración & dosificación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Taurina/uso terapéutico
16.
Alcohol ; 60: 115-120, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28442218

RESUMEN

Among animals at risk for excessive ethanol consumption such as the HDID selected mouse lines, there is considerable individual variation in the amount of ethanol consumed and the associated blood ethanol concentrations (BECs). For the HDID lines, this variation occurs even though the residual genetic variation associated with the DID phenotype has been largely exhausted and thus is most likely associated with epigenetic factors. Here we focus on the question of whether the genes associated with individual variation in HDID-1 mice are different from those associated with selection (risk) (Iancu et al., 2013). Thirty-three HDID-1 mice were phenotyped for their BECs at the end of a standard DID trial, were sacrificed 3 weeks later, and RNA-Seq was used to analyze the striatal transcriptome. The data obtained illustrate that there is considerable overlap of the risk and variation gene sets, both focused on the fine-tuning of synaptic plasticity.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Oscuridad , Etanol/toxicidad , Variación Genética , Transcriptoma/efectos de los fármacos , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/sangre , Consumo de Bebidas Alcohólicas/psicología , Animales , Nivel de Alcohol en Sangre , Encéfalo/metabolismo , Encéfalo/fisiopatología , Epigénesis Genética/efectos de los fármacos , Etanol/sangre , Femenino , Perfilación de la Expresión Génica/métodos , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , N-Metilaspartato/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Fenotipo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
17.
Alcohol ; 52: 25-32, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27139234

RESUMEN

The comorbidity of substance- and alcohol-use disorders (AUD) with other psychiatric conditions, especially those related to stress such as post-traumatic stress disorder (PTSD), is well-established. Binge-like intoxication is thought to be a crucial stage in the development of the chronic relapsing nature of the addictions, and self-medication through binge-like drinking is commonly seen in PTSD patients. We have selectively bred two separate High Drinking in the Dark (HDID-1 and HDID-2) mouse lines to reach high blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol starting shortly after the onset of circadian dark. As an initial step toward the eventual goal of employing binge-prone HDID mice to study PTSD-like behavior including alcohol binge drinking, we sought first to determine their ability to acquire conditioned fear. We asked whether these mice acquired, generalized, or extinguished conditioned freezing to a greater or lesser extent than unselected control HS/Npt mice. In two experiments, we trained groups of 16 adult male mice in a standard conditioned fear protocol. Mice were tested for context-elicited freezing, and then, in a novel context, for cue-induced freezing. After extinction tests, renewal of conditioned fear was tested in the original context. Mice of all three genotypes showed typical fear responding. Context paired with shock elicited freezing behavior in a control experiment, but cue unpaired with shock did not. These studies indicate that fear learning per se does not appear to be influenced by genes causing predisposition to binge drinking, suggesting distinct neural mechanisms. However, HDID mice are shown to be a suitable model for studying the role of conditioned fear specifically in binge-like drinking.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/psicología , Consumo Excesivo de Bebidas Alcohólicas/genética , Consumo Excesivo de Bebidas Alcohólicas/psicología , Condicionamiento Psicológico , Miedo/psicología , Animales , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Masculino , Ratones , Distribución Aleatoria , Especificidad de la Especie
18.
Genetics ; 197(4): 1377-93, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24923803

RESUMEN

Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations. Combinatorial integration of functional genomics experimental results revealed a single QTL positional candidate gene in one of the loci common to both preference and withdrawal. Functional validation studies in Ap3m2 knockout mice confirmed these relationships. Genetic validation involves confirming the existence of segregating polymorphisms that could account for the phenotypic effect. By exploiting recent advances in mouse genotyping, sequence, epigenetics, and phylogeny resources, we confirmed that Ap3m2 resides in an appropriately segregating genomic region. We have demonstrated genetic and alcohol-induced regulation of Ap3m2 expression. Although sequence analysis revealed no polymorphisms in the Ap3m2-coding region that could account for all phenotypic differences, there are several upstream SNPs that could. We have identified one of these to be an H3K4me3 site that exhibits strain differences in methylation. Thus, by making cross-species functional genomics readily computable we identified a common QTL candidate for two related bio-behavioral processes via functional evidence and demonstrate sufficiency of the genetic locus as a source of variation underlying two traits.


Asunto(s)
Complejo 3 de Proteína Adaptadora/genética , Subunidades mu de Complejo de Proteína Adaptadora/genética , Consumo de Bebidas Alcohólicas/genética , Sitios de Carácter Cuantitativo , Complejo 3 de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Animales , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Biología Computacional , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Femenino , Genoma , Genómica , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Noqueados , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
19.
Alcohol Clin Exp Res ; 38(5): 1284-92, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24612020

RESUMEN

BACKGROUND: Initial sensitivity to ethanol (EtOH) and the capacity to develop acute functional tolerance (AFT) to its adverse effects may influence the amount of alcohol consumed and may also predict future alcohol use patterns. The current study assessed sensitivity and AFT to the ataxic and hypnotic effects of EtOH in the first replicate of mice (HDID-1) selectively bred for high blood EtOH concentrations (BECs) following limited access to EtOH in the Drinking in the Dark (DID) paradigm. METHODS: Naïve male and female HDID-1 and HS/Npt mice from the progenitor stock were evaluated in 3 separate experiments. In Experiments 1 and 2, EtOH-induced ataxia was assessed using the static dowel task. In Experiment 3, EtOH-induced hypnosis was assessed by using modified restraint tubes to measure the loss of righting reflex (LORR). RESULTS: HDID-1 mice exhibited reduced initial sensitivity to both EtOH-induced ataxia (p < 0.001) and hypnosis (p < 0.05) relative to HS/Npt mice. AFT was calculated by subtracting the BEC at loss of function from the BEC at recovery (Experiments 1 and 3) or by subtracting BEC at an initial recovery from the BEC at a second recovery following an additional alcohol dose (Experiment 2). The dowel test yielded no line differences in AFT, but HS/Npt mice developed slightly greater AFT to EtOH-induced LORR than HDID-1 (p < 0.05). CONCLUSIONS: These results suggest that HDID-1 mice exhibit aspects of blunted ataxic and hypnotic sensitivity to EtOH which may influence their high EtOH intake via DID, but do not display widely different development of AFT. These findings differ from previous findings with the high alcohol-preferring (HAP) selected mouse lines, suggesting that genetic predisposition for binge, versus other forms of excessive alcohol consumption, is associated with unique responses to EtOH-induced motor incoordination.


Asunto(s)
Intoxicación Alcohólica/genética , Etanol/efectos adversos , Predisposición Genética a la Enfermedad/genética , Animales , Ataxia/inducido químicamente , Tolerancia a Medicamentos/genética , Etanol/farmacología , Femenino , Masculino , Ratones Endogámicos , Reflejo de Enderezamiento/efectos de los fármacos
20.
Alcohol Clin Exp Res ; 38(12): 2915-24, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25581648

RESUMEN

BACKGROUND: Data from C57BL/6J (B6) × DBA/2J (D2) F2 intercrosses (B6xD2 F2 ), standard and recombinant inbred strains, and heterogeneous stock mice indicate that a reciprocal (or inverse) genetic relationship exists between alcohol consumption and withdrawal severity. Furthermore, some genetic studies have detected reciprocal quantitative trait loci (QTLs) for these traits. We used a novel mouse model developed by simultaneous selection for both high alcohol consumption/low withdrawal and low alcohol consumption/high withdrawal and analyzed the gene expression and genome-wide genotypic differences. METHODS: Randomly chosen third selected generation (S3 ) mice (N = 24/sex/line), bred from a B6xD2 F2 , were genotyped using the Mouse Universal Genotyping Array, which provided 2,760 informative markers. QTL analysis used a marker-by-marker strategy with the threshold for a significant log of the odds (LOD) set at 10. Gene expression in the ventral striatum was measured using the Illumina Mouse 8.2 array. Differential gene expression and the weighted gene co-expression network analysis (WGCNA) were implemented. RESULTS: Significant QTLs for consumption/withdrawal were detected on chromosomes (Chr) 2, 4, 9, and 12. A suggestive QTL mapped to Chr 6. Some of the QTLs overlapped with known QTLs mapped for 1 of the traits individually. One thousand seven hundred and forty-five transcripts were detected as being differentially expressed between the lines; there was some overlap with known withdrawal genes (e.g., Mpdz) located within QTL regions. WGCNA revealed several modules of co-expressed genes showing significant effects in both differential expression and intramodular connectivity; a module richly annotated with kinase-related annotations was most affected. CONCLUSIONS: Marked effects of selection on expression and network structure were detected. QTLs overlapping with differentially expressed genes on Chr 2 (distal) and 4 suggest that these are cis-eQTLs (Chr 2: Kif3b, Kcnq2; Chr 4: Mpdz, Snapc3). Other QTLs identified were on Chr 2 (proximal), 9, and 12. Network results point to involvement of kinase-related mechanisms and outline the need for further efforts such as interrogation of noncoding RNAs.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Cruzamiento/métodos , Redes Reguladoras de Genes/genética , Sitios de Carácter Cuantitativo/genética , Síndrome de Abstinencia a Sustancias/genética , Transcripción Genética/genética , Consumo de Bebidas Alcohólicas/patología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Especificidad de la Especie , Síndrome de Abstinencia a Sustancias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA