Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Pharmacol Exp Ther ; 374(1): 62-73, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32269169

RESUMEN

Arginase is a potential target for asthma treatment. However, there are currently no arginase inhibitors available for clinical use. Here, a novel class of arginase inhibitors was synthesized, and their efficacy was pharmacologically evaluated. The reference compound 2(S)-amino-6-boronohexanoic acid (ABH) and >200 novel arginase inhibitors were tested for their ability to inhibit recombinant human arginase 1 and 2 in vitro. The most promising compounds were separated as enantiomers. Enantiomer pairs SHK242 and SHK243, and SHK277 and SHK278 were tested for functional efficacy by measuring their effect on allergen-induced airway narrowing in lung slices of ovalbumin-sensitized guinea pigs ex vivo. A guinea pig model of acute allergic asthma was used to examine the effect of the most efficacious enantiopure arginase inhibitors on allergen-induced airway hyper-responsiveness (AHR), early and late asthmatic reactions (EAR and LAR), and airway inflammation in vivo. The novel compounds were efficacious in inhibiting arginase 1 and 2 in vitro. The enantiopure SHK242 and SHK277 fully inhibited arginase activity, with IC50 values of 3.4 and 10.5 µM for arginase 1 and 2.9 and 4.0 µM for arginase 2, respectively. Treatment of slices with ABH or novel compounds resulted in decreased ovalbumin-induced airway narrowing compared with control, explained by increased local nitric oxide production in the airway. In vivo, ABH, SHK242, and SHK277 protected against allergen-induced EAR and LAR but not against AHR or lung inflammation. We have identified promising novel arginase inhibitors for the potential treatment of allergic asthma that were able to protect against allergen-induced early and late asthmatic reactions. SIGNIFICANCE STATEMENT: Arginase is a potential drug target for asthma treatment, but currently there are no arginase inhibitors available for clinical use. We have identified promising novel arginase inhibitors for the potential treatment of allergic asthma that were able to protect against allergen-induced early and late asthmatic reactions. Our new inhibitors show protective effects in reducing airway narrowing in response to allergens and reductions in the early and late asthmatic response.


Asunto(s)
Alérgenos/efectos adversos , Arginasa/antagonistas & inhibidores , Asma/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Animales , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/uso terapéutico , Cobayas , Masculino
2.
BMC Womens Health ; 15: 103, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26563197

RESUMEN

BACKGROUND: A caesarean section (CS) can cause a defect or disruption of the myometrium at the site of the uterine scar, called a niche. In recent years, an association between a niche and postmenstrual spotting after a CS has been demonstrated. Hysteroscopic resection of these niches is thought to reduce spotting and menstrual pain. However, there are no randomised trials assessing the effectiveness of a hysteroscopic niche resection. METHODS/DESIGN: We planned a multicentre randomised trial comparing hysteroscopic niche resection to no intervention. We study women with postmenstrual spotting after a CS and a niche with a residual myometrium of at least 3 mm during sonohysterography. After informed consent is obtained, eligible women will be randomly allocated to hysteroscopic resection of the niche or expectant management for 6 months. The primary outcome is the number of days with postmenstrual spotting during one menstrual cycle 6 months after randomisation. Secondary outcomes are menstrual characteristics, menstruation related pain and experienced discomfort due to spotting or menstrual pain, quality of life, patient satisfaction, sexual function, urological symptoms, medical consultations, medication use, complications, lost productivity and medical costs. Measurements will be performed at baseline and at 3 and 6 months after randomisation. A cost-effectiveness analysis will be performed from a societal perspective at 6 months after randomisation. DISCUSSION: This trial will provide insight in the (cost)effectiveness of hysteroscopic resection of a niche versus expectant management in women who have postmenstrual spotting and a niche with sufficient residual myometrium to perform a hysteroscopic niche resection. TRIAL REGISTRATION: Dutch Trial Register NTR3269 . Registered 1 February 2012. ZonMw Grant number 80-82305-97-12030.


Asunto(s)
Cesárea/rehabilitación , Cicatriz/rehabilitación , Histeroscopía/estadística & datos numéricos , Calidad de Vida , Útero/cirugía , Cesárea/efectos adversos , Análisis Costo-Beneficio , Femenino , Humanos , Metrorragia/prevención & control , Útero/patología
3.
Pulm Pharmacol Ther ; 29(2): 129-43, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25218650

RESUMEN

Glucocorticoids are the mainstay for the treatment of chronic inflammatory diseases including asthma and chronic obstructive pulmonary disease (COPD). However, it has been recognized that glucocorticoids do not work well in certain patient populations suggesting reduced sensitivity. The ultimate biologic responses to glucocorticoids are determined by not only the concentration of glucocorticoids but also the differences between individuals in glucocorticoid sensitivity, which is influenced by multiple factors. Studies are emerging to understand these mechanisms in detail, which would help in increasing glucocorticoid sensitivity in patients with chronic airways disease. This review aims to highlight both classical and emerging concepts of the anti-inflammatory mechanisms of glucocorticoids and also review some novel strategies to overcome steroid insensitivity in airways disease.


Asunto(s)
Glucocorticoides/uso terapéutico , Enfermedades Respiratorias/tratamiento farmacológico , Animales , Antiinflamatorios/uso terapéutico , Asma/tratamiento farmacológico , Humanos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Receptores de Glucocorticoides/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
4.
J Pharmacol Exp Ther ; 349(2): 229-38, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24563530

RESUMEN

Airway inflammation and remodeling are major features of chronic obstructive pulmonary disease (COPD), whereas pulmonary hypertension is a common comorbidity associated with a poor disease prognosis. Recent studies in animal models have indicated that increased arginase activity contributes to features of asthma, including allergen-induced airway eosinophilia and mucus hypersecretion. Although cigarette smoke and lipopolysaccharide (LPS), major risk factors for COPD, may increase arginase expression, the role of arginase in COPD is unknown. This study aimed to investigate the role of arginase in pulmonary inflammation and remodeling using an animal model of COPD. Guinea pigs were instilled intranasally with LPS or saline twice weekly for 12 weeks and pretreated by inhalation of the arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) or vehicle. Repeated LPS exposure increased lung arginase activity, resulting in increased l-ornithine/l-arginine and l-ornithine/l-citrulline ratios. Both ratios were reversed by ABH. ABH inhibited the LPS-induced increases in pulmonary IL-8, neutrophils, and goblet cells as well as airway fibrosis. Remarkably, LPS-induced right ventricular hypertrophy, indicative of pulmonary hypertension, was prevented by ABH. Strong correlations were found between arginase activity and inflammation, airway remodeling, and right ventricular hypertrophy. Increased arginase activity contributes to pulmonary inflammation, airway remodeling, and right ventricular hypertrophy in a guinea pig model of COPD, indicating therapeutic potential for arginase inhibitors in this disease.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Arginasa/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Animales , Arginasa/antagonistas & inhibidores , Fibrosis , Cobayas , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/enzimología , Hipertrofia Ventricular Derecha/inmunología , Hipertrofia Ventricular Derecha/patología , Interleucina-8/metabolismo , Lipopolisacáridos/farmacología , Pulmón/irrigación sanguínea , Pulmón/enzimología , Pulmón/patología , Mucina 5AC/metabolismo , Neutrófilos/patología , Neumonía/enzimología , Neumonía/inmunología , Neumonía/patología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
5.
Naunyn Schmiedebergs Arch Pharmacol ; 384(2): 133-45, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21603974

RESUMEN

Fibrosis is part of airway remodelling observed in bronchial asthma and COPD. Pro-fibrotic activity of lung fibroblasts may be suppressed by ß-adrenoceptor activation. We aimed, first, to characterise the expression pattern of ß-adrenoceptor subtypes in human lung fibroblasts and, second, to probe ß-adrenoceptor signalling with an emphasis on anti-fibrotic actions. Using reverse transcription PCR, messenger RNA (mRNA) encoding ß(2)-adrenoceptors was detected in MRC-5, HEL-299 and primary human lung fibroblasts, whereas transcripts for ß(1)- and ß(3)-adrenoceptors were not found. Real-time measurement of dynamic mass redistribution in MRC-5 cells revealed ß-agonist-induced G(s)-signalling. Proliferation of MRC-5 cells (determined by [(3)H]-thymidine incorporation) was significantly inhibited by ß-agonists including the ß(2)-selective agonist formoterol (-logIC(50), 10.2) and olodaterol (-logIC(50), 10.6). Formoterol's effect was insensitive to ß(1)-antagonism (GCP 20712, 3 µM), but sensitive to ß(2)-antagonism (ICI 118,551; apparent, pA (2), 9.6). Collagen synthesis in MRC-5 cells (determined by [(3)H]-proline incorporation) was inhibited by ß-agonists including formoterol (-logIC(50), 10.0) and olodaterol (-logIC(50), 10.3) in a ß(2)-blocker-sensitive manner. α-Smooth muscle actin, a marker of myo-fibroblast differentiation, was down-regulated at the mRNA and the protein level by about 50% following 24 and 48 h exposure to 1 nM formoterol, a maximally active concentration. In conclusion, human lung fibroblasts exclusively express ß(2)-adrenoceptors and these mediate inhibition of various markers of pro-fibrotic cellular activity. Under clinical conditions, anti-fibrotic actions may accompany the therapeutic effect of long-term ß(2)-agonist treatment of bronchial asthma and COPD.


Asunto(s)
Proliferación Celular , Colágeno/biosíntesis , Fibroblastos/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores Adrenérgicos beta 2/fisiología , Agonistas Adrenérgicos beta/farmacología , Western Blotting , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Masculino , Fibrosis Pulmonar/patología , ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
6.
Eur Respir J ; 38(2): 318-28, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21310883

RESUMEN

Airway remodelling, characterised by increased airway smooth muscle (ASM) mass, subepithelial fibrosis, goblet cell hyperplasia and mucus gland hypertrophy, is a feature of chronic asthma. Increased arginase activity could contribute to these features via increased formation of polyamines and l-proline downstream of the arginase product l-ornithine, and via reduced nitric oxide synthesis. Using the specific arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH), we studied the role of arginase in airway remodelling using a guinea pig model of chronic asthma. Ovalbumin-sensitised guinea pigs were treated with ABH or PBS via inhalation before each of 12 weekly allergen or saline challenges, and indices of arginase activity, and airway remodelling, inflammation and responsiveness were studied 24 h after the final challenge. Pulmonary arginase activity of repeatedly allergen-challenged guinea pigs was increased. Allergen challenge also increased ASM mass and maximal contraction of denuded tracheal rings, which were prevented by ABH. ABH also attenuated allergen-induced pulmonary hydroxyproline (fibrosis) and putrescine, mucus gland hypertrophy, goblet cell hyperplasia, airway eosinophilia and interleukin-13, whereas an increased l-ornithine/l-citrulline ratio in the lung was normalised. Moreover, allergen-induced hyperresponsiveness of perfused tracheae was fully abrogated by ABH. These findings demonstrate that arginase is prominently involved in allergen-induced airway remodelling, inflammation and hyperresponsiveness in chronic asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Arginasa/fisiología , Asma/enzimología , Asma/fisiopatología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Alérgenos/efectos adversos , Aminocaproatos/uso terapéutico , Animales , Antiasmáticos/uso terapéutico , Arginasa/antagonistas & inhibidores , Compuestos de Boro/uso terapéutico , Hiperreactividad Bronquial/tratamiento farmacológico , Enfermedad Crónica , Citrulina/análisis , Eosinofilia/tratamiento farmacológico , Glándulas Exocrinas/efectos de los fármacos , Células Caliciformes/efectos de los fármacos , Cobayas , Interleucina-13/análisis , Pulmón/química , Masculino , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/efectos de los fármacos , Ornitina/análisis , Ovalbúmina/efectos adversos , Fibrosis Pulmonar/tratamiento farmacológico , Tráquea/efectos de los fármacos , Tráquea/fisiopatología
7.
Eur Respir J ; 38(4): 789-96, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21349917

RESUMEN

Airway remodelling and emphysema are major structural abnormalities in chronic obstructive pulmonary disease (COPD). In addition, pulmonary vascular remodelling may occur and contribute to pulmonary hypertension, a comorbidity of COPD. Increased cholinergic activity in COPD contributes to airflow limitation and, possibly, to inflammation and airway remodelling. This study aimed to investigate the role of acetylcholine in pulmonary inflammation and remodelling using an animal model of COPD. To this aim, guinea pigs were instilled intranasally with lipopolysaccharide (LPS) twice weekly for 12 weeks and were treated, by inhalation, with the long-acting muscarinic receptor antagonist tiotropium. Repeated LPS exposure induced airway and parenchymal neutrophilia, and increased goblet cell numbers, lung hydroxyproline content, airway wall collagen and airspace size. Furthermore, LPS increased the number of muscularised microvessels in the adventitia of cartilaginous airways. Tiotropium abrogated the LPS-induced increase in neutrophils, goblet cells, collagen deposition and muscularised microvessels, but had no effect on emphysema. In conclusion, tiotropium inhibits remodelling of the airways as well as pulmonary inflammation in a guinea pig model of COPD, suggesting that endogenous acetylcholine plays a major role in the pathogenesis of this disease.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Antagonistas Colinérgicos/farmacología , Neumonía/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Derivados de Escopolamina/farmacología , Acetilcolina/fisiología , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Animales , Animales no Consanguíneos , Modelos Animales de Enfermedad , Enfisema/tratamiento farmacológico , Enfisema/inmunología , Células Caliciformes/efectos de los fármacos , Células Caliciformes/inmunología , Células Caliciformes/metabolismo , Cobayas , Lipopolisacáridos/toxicidad , Pulmón/efectos de los fármacos , Pulmón/inmunología , Masculino , Mucina 5AC/metabolismo , Antagonistas Muscarínicos/farmacología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neumonía/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inmunología , Bromuro de Tiotropio
8.
Eur Respir J ; 34(6): 1436-43, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19460789

RESUMEN

Acetylcholine is the primary parasympathetic neurotransmitter in the airways and is known to cause bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine also regulates aspects of remodelling and inflammation through its action on muscarinic receptors. In the present study, we aimed to determine the effects of muscarinic receptor stimulation on cytokine production by human airway smooth muscle cells (primary and immortalised cell lines). The muscarinic receptor agonists carbachol and methacholine both induced modest effects on basal interleukin (IL)-8 and -6 secretion, whereas the secretion of RANTES, eotaxin, vascular endothelial growth factor-A and monocyte chemoattractant protein-1 was not affected. Secretion of IL-8 and -6 was only observed in immortalised airway smooth muscle cells that express muscarinic M3 receptors. In these cells, methacholine also significantly augmented IL-8 secretion in combination with cigarette smoke extract in a synergistic manner, whereas synergistic effects on IL-6 secretion were not significant. Muscarinic M3 receptors were the primary subtype involved in augmenting cigarette smoke extract-induced IL-8 secretion, as only tiotropium bromide and muscarinic M3 receptor subtype selective antagonists abrogated the effects of methacholine. Collectively, these results indicate that muscarinic M3 receptor stimulation augments cigarette smoke extract-induced cytokine production by airway smooth muscle. This interaction could be of importance in patients with chronic obstructive pulmonary disease.


Asunto(s)
Interleucina-8/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptor Muscarínico M3/metabolismo , Fumar/efectos adversos , Acetilcolina/metabolismo , Bronquios/metabolismo , Células Cultivadas , Quimiocina CCL5/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Inflamación , Interleucina-6/metabolismo , Cloruro de Metacolina/farmacología , Neurotransmisores/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología
9.
Eur Respir J ; 34(1): 191-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19251784

RESUMEN

Peroxynitrite has been shown to be crucially involved in airway hyperresponsiveness (AHR) after the late asthmatic reaction (LAR). Peroxynitrite production may result from simultaneous synthesis of nitric oxide (NO) and superoxide by inducible NO-synthase (iNOS) at low L-arginine concentrations. L-arginine availability to iNOS is regulated by its cellular uptake, which can be inhibited by eosinophil-derived polycations and by arginase, which competes with iNOS for the common substrate. Using a guinea pig model of allergic asthma, we investigated whether aberrant L-arginine homeostasis could underlie peroxynitrite-mediated AHR after the LAR. After the LAR, arginase activity in the airways and eosinophil peroxidase release from bronchoalveolar lavage cells were increased. These changes were associated with a 2.0-fold AHR to methacholine as measured in isolated perfused tracheal preparations. AHR was reduced by exogenous L-arginine administration. Moreover, both the arginase inhibitor N(omega)-hydroxy-nor-L-arginine (nor-NOHA) and the polycation antagonist heparin normalised airway responsiveness. These effects were reversed by the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME), indicating that both agents reduced AHR by restoring bronchodilating NO production. In conclusion, in allergen-challenged guinea pigs, the AHR after the LAR is caused by arginase- and polycation-induced attenuation of L-arginine availability to iNOS, which may switch the enzyme to simultaneous production of superoxide and NO, and, consequently, peroxynitrite.


Asunto(s)
Arginina/deficiencia , Asma/metabolismo , Hiperreactividad Bronquial/metabolismo , Animales , Arginasa/metabolismo , Asma/patología , Hiperreactividad Bronquial/etiología , Modelos Animales de Enfermedad , Cobayas , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ovalbúmina/metabolismo , Perfusión , Ácido Peroxinitroso/metabolismo , Poliaminas , Polielectrolitos , Tráquea/metabolismo
10.
Eur Respir J ; 32(2): 487-502, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18669789

RESUMEN

Airway hyperresponsiveness (AHR) is a hallmark clinical symptom of asthma. At least two components of AHR have been identified: 1) baseline AHR, which is persistent and presumably caused by airway remodelling due to chronic recurrent airway inflammation; and 2) acute and variable AHR, which is associated with an episodic increase in airway inflammation due to environmental factors such as allergen exposure. Despite intensive research, the mechanisms underlying acute and chronic AHR are poorly understood. Owing to the complex variety of interactive processes that may be involved, in vitro model systems and animal models are indispensable to the unravelling of these mechanisms at the cellular and molecular level. The present paper focuses on a number of translational studies addressing the emerging central role of the airway smooth muscle cell, as a multicompetent cell involved in acute airway constriction as well as structural changes in the airways, in the pathophysiology of airway hyperresponsiveness.


Asunto(s)
Asma/diagnóstico , Asma/fisiopatología , Hiperreactividad Bronquial/patología , Enfermedad Aguda , Alérgenos/química , Animales , Modelos Animales de Enfermedad , Ambiente , Humanos , Inflamación , Modelos Biológicos , Miocitos del Músculo Liso/metabolismo , Fenotipo , Trastornos Respiratorios/inmunología , Trastornos Respiratorios/fisiopatología , Sistema Respiratorio/inmunología , Sistema Respiratorio/fisiopatología , Transducción de Señal
11.
Eur Respir J ; 30(4): 653-61, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17537779

RESUMEN

Chronic inflammation in asthma and chronic obstructive pulmonary disease drives pathological structural remodelling of the airways. Using tiotropium bromide, acetylcholine was recently identified as playing a major regulatory role in airway smooth muscle remodelling in a guinea pig model of ongoing allergic asthma. The aim of the present study was to investigate other aspects of airway remodelling and to compare the effectiveness of tiotropium to the glucocorticosteroid budesonide. Ovalbumin-sensitised guinea pigs were challenged for 12 weeks with aerosolised ovalbumin. The ovalbumin induced airway smooth muscle thickening, hypercontractility of tracheal smooth muscle, increased pulmonary contractile protein (smooth-muscle myosin) abundance, mucous gland hypertrophy, an increase in mucin 5 subtypes A and C (MUC5AC)-positive goblet cell numbers and eosinophilia. It was reported previously that treatment with tiotropium inhibits airway smooth muscle thickening and contractile protein expression, and prevents tracheal hypercontractility. This study demonstrates that tiotropium also fully prevented allergen-induced mucous gland hypertrophy, and partially reduced the increase in MUC5AC-positive goblet cell numbers and eosinophil infiltration. Treatment with budesonide also prevented airway smooth muscle thickening, contractile protein expression, tracheal hypercontractility and mucous gland hypertrophy, and partially reduced MUC5AC-positive goblet cell numbers and eosinophilia. This study demonstrates that tiotropium and budesonide are similarly effective in inhibiting several aspects of airway remodelling, providing further evidence that the beneficial effects of tiotropium bromide might exceed those of bronchodilation.


Asunto(s)
Alérgenos/química , Budesonida/uso terapéutico , Hipersensibilidad/tratamiento farmacológico , Derivados de Escopolamina/uso terapéutico , Corticoesteroides/metabolismo , Animales , Broncodilatadores/farmacología , Budesonida/química , Antagonistas Colinérgicos/farmacología , Eosinofilia , Matriz Extracelular/metabolismo , Glucocorticoides/química , Cobayas , Humanos , Inflamación , Masculino , Músculo Liso/metabolismo , Ovalbúmina/química , Bromuro de Tiotropio , Tráquea/patología
12.
Br J Pharmacol ; 151(7): 1041-8, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17558435

RESUMEN

BACKGROUND AND PURPOSE: We investigated expression of cannabinoid receptors and the effects of the endogenous cannabinoid virodhamine and the synthetic agonist CP55,940 on cAMP accumulation and interleukin-8 (IL-8) release in human bronchial epithelial cells. EXPERIMENTAL APPROACH: Human bronchial epithelial (16HBE14o(-)) cells were used. Total mRNA was isolated and cannabinoid receptor mRNAs were detected by RT-PCR. Expression of CB(1) and CB(2) receptor proteins was detected with Western blotting using receptor-specific antibodies. cAMP accumulation was measured by competitive radioligand binding assay. IL-8 release was measured by ELISA. KEY RESULTS: CB(1) and CB(2) receptor mRNAs and proteins were found. Both agonists concentration-dependently decreased forskolin-induced cAMP accumulation. This effect was inhibited by the CB(2) receptor antagonist SR144528, and was sensitive to Pertussis toxin (PTX), suggesting the involvement of CB(2) receptors and G(i/o)-proteins. Cell pretreatment with PTX unmasked a stimulatory component, which was blocked by the CB(1) receptor antagonist SR141716A. CB(2) receptor-mediated inhibition of cAMP production by virodhamine and CP55,940 was paralleled by inhibition of tumor necrosis factor-alpha (TNF-alpha) induced IL-8 release. This inhibition was insensitive to SR141716A. In the absence of agonist, SR144528 by itself reduced TNF-alpha induced IL-8 release. CONCLUSIONS AND IMPLICATIONS: Our results show for the first time that 16HBE14o(-) cells respond to virodhamine and CP55,940. CB(1) and CB(2) receptor subtypes mediated activation and inhibition of adenylyl cyclase, respectively. Stimulation of the dominant CB(2) receptor signalling pathway diminished cAMP accumulation and TNF-alpha-induced IL-8 release. These observations may imply that cannabinoids exert anti-inflammatory properties in airways by modulating cytokine release.


Asunto(s)
Ácidos Araquidónicos/farmacología , AMP Cíclico/metabolismo , Ciclohexanoles/farmacología , Células Epiteliales/efectos de los fármacos , Interleucina-8/metabolismo , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Analgésicos/farmacología , Western Blotting , Bronquios/citología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Canfanos/farmacología , Cannabinoides/farmacología , Línea Celular , Colforsina/farmacología , Relación Dosis-Respuesta a Droga , Antagonismo de Drogas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Inmunosupresores/farmacología , Toxina del Pertussis/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rimonabant , Factor de Necrosis Tumoral alfa/farmacología
13.
Br J Pharmacol ; 150(2): 136-42, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17160007

RESUMEN

BACKGROUND AND PURPOSE: Recently, the use of inhaled insulin formulations for the treatment of type I and type II diabetes has been approved in Europe and in the United States. For regular use, it is critical that airway function remains unimpaired in response to insulin exposure. EXPERIMENTAL APPROACH: We investigated the effects of insulin on airway smooth muscle (ASM) contraction and contractile prostaglandin (PG) production, using guinea-pig open-ring tracheal smooth muscle preparations. KEY RESULTS: It was found that insulin (1 nM-1 microM) induced a concentration-dependent contraction that was insensitive to epithelium removal. These sustained contractions were susceptible to inhibitors of cyclooxygenase (indomethacin, 3 microM), Rho-kinase (Y-27632, 1 microM) and p42/44 MAP kinase (PD-98059, 30 microM and U-0126, 3 microM), but not of PI-3-kinase (LY-294002,10 microM). In addition, insulin significantly increased PGF(2alpha)-production which was inhibited by indomethacin, but not Y-27632. Moreover, the FP-receptor antagonist AL-8810 (10 microM) and the EP(1)-receptor antagonist AH-6809 (10 microM) strongly reduced insulin-induced contractions, supporting a pivotal role for contractile prostaglandins. CONCLUSIONS AND IMPLICATIONS: Collectively, the results show that insulin induces guinea-pig ASM contraction presumably through the production of contractile prostaglandins, which in turn are dependent on Rho-kinase for their contractile effects. The data suggest that administration of insulin as an aerosol could result in some acute adverse effects on ASM function.


Asunto(s)
Insulina/fisiología , Músculo Liso/fisiología , Tráquea/fisiología , Animales , Cobayas , Técnicas In Vitro , Insulina/farmacología , Masculino , Contracción Muscular , Músculo Liso/metabolismo , Prostaglandinas/biosíntesis , Mucosa Respiratoria/fisiología , Tráquea/metabolismo
14.
Eur Respir J ; 25(5): 864-72, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15863644

RESUMEN

Salbutamol consists of a racemic mixture of R- and S-salbutamol. R-salbutamol (levalbuterol) is the active bronchodilating enantiomer, whereas S-salbutamol is thought to be pharmacologically inactive or to exert adverse effects. This study evaluated the bronchoprotective effects of inhalation of therapeutically relevant doses of the racemate and individual enantiomers in guinea pigs. It was found that basal airway reactivity to histamine was similarly reduced 30 min after inhalation of equivalent doses of RS- and R-salbutamol; this protective effect disappeared within 3 h. Inhalation of RS- and R-salbutamol 30 min before and 5.5 h after allergen challenge suppressed allergen-induced airway hyperreactivity to histamine after the early and late asthmatic reaction, completely inhibiting the early asthmatic reaction and tending to reduce the development of the late asthmatic reaction. At 5 h after allergen challenge, the inhibition of airway hyperreactivity was more pronounced in animals treated with R-salbutamol compared to racemate-treated animals. Both basal airway reactivity and allergen-induced hyperreactivity were not affected by S-salbutamol. Inflammatory cell infiltration was not affected by the racemate or the individual enantiomers. In conclusion, inhalation of therapeutically relevant doses of R- and RS-salbutamol effectively suppress allergen-induced airway reactivity after the early and late asthmatic reactions, the R-enantiomer being slightly more potent with respect to early airway reactivity than the racemate. No adverse effects were observed for the S-enantiomer.


Asunto(s)
Albuterol/farmacología , Asma/tratamiento farmacológico , Asma/fisiopatología , Hiperreactividad Bronquial/tratamiento farmacológico , Albuterol/química , Alérgenos , Animales , Asma/inducido químicamente , Hiperreactividad Bronquial/inducido químicamente , Modelos Animales de Enfermedad , Cobayas , Isomerismo , Masculino , Cloruro de Sodio , Resultado del Tratamiento
15.
Thorax ; 57(1): 61-6, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11809992

RESUMEN

BACKGROUND: The beta2 adrenoceptor and its 5' untranslated region contain a number of genetic variants. The aim of this study was to investigate the potential for genetic variation at this locus to influence the expression of beta2 adrenoceptors on circulating peripheral blood mononuclear cells (PBMCs). METHODS: Genotype was determined in 96 individuals with asthma for four polymorphisms at the beta2 adrenoceptor locus. Beta2 adrenoceptor binding and cyclic AMP responses to isoprenaline in PBMCs were determined and the relationship between genotype/haplotype and beta2 adrenoceptor expression and response to isoprenaline examined. RESULTS: Beta2 adrenoceptor promoter polymorphisms were found to be common in white subjects. Strong linkage disequilibrium exists across this locus, resulting in the occurrence of several common haplotypes. No single polymorphism or haplotype was correlated with the level of beta2 adrenoceptor expression or cyclic AMP responses to isoprenaline in vitro. CONCLUSION: Beta2 adrenoceptor polymorphisms, when considered in isolation or by extended haplotypes, do not determine the basal level of expression or coupling of beta2 adrenoceptors in PBMCs from asthmatic subjects.


Asunto(s)
Asma/genética , Leucocitos Mononucleares/metabolismo , Polimorfismo Genético/genética , Regiones Promotoras Genéticas/genética , Receptores Adrenérgicos beta 2/genética , Adolescente , Adulto , Análisis de Varianza , Frecuencia de los Genes , Haplotipos/genética , Humanos , Desequilibrio de Ligamiento/genética , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodos , Receptores Adrenérgicos beta 2/metabolismo
16.
Eur J Pharmacol ; 431(3): 353-9, 2001 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-11730729

RESUMEN

In the present study, we investigated the effect of fenoterol-induced constitutive beta(2)-adrenoceptor activity on muscarinic receptor agonist- and histamine-induced bovine tracheal smooth muscle contractions. Bovine tracheal smooth muscle strips were incubated with 10 microM fenoterol or vehicle for various periods of time (5, 30 min, 18 h) at 37 degrees C. After extensive washout (3 h, 37 degrees C), isometric contractions were measured to the full muscarinic receptor agonist methacholine, the partial muscarinic receptor agonist 4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium (McN-A-343) and histamine. Fenoterol treatment significantly reduced the sensitivity (pEC(50)) to methacholine in a time-dependent manner, without affecting maximal contraction (E(max)). Fenoterol treatment similarly reduced the pEC(50) of McN-A-343 and histamine; however, E(max) values were also reduced, to approximately 70% of control after 18-h treatment. The inverse agonist timolol, having no effect on control preparations, consistently restored the reduced pEC(50) and E(max) values of the contractile agonists. Remarkably, in the presence of timolol the pEC(50) values of McN-A-343 and histamine in fenoterol-treated airways were significantly enhanced compared to controls. In conclusion, fenoterol-induced constitutive beta(2)-adrenoceptor activity reduces muscarinic receptor agonist- and histamine-induced contractions of bovine tracheal smooth muscle, which can be reversed by the inverse agonist timolol. Moreover, after beta(2)-adrenoceptor agonist treatment, inverse agonism by beta-adrenoceptor antagonists may cause enhanced airway reactivity to contractile mediators.


Asunto(s)
Músculo Liso/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Animales , Bovinos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Fenoterol/farmacología , Histamina/farmacología , Técnicas In Vitro , Cloruro de Metacolina/farmacología , Agonistas Muscarínicos/farmacología , Contracción Muscular , Timolol/farmacología , Tráquea/metabolismo
17.
Mediators Inflamm ; 10(3): 143-54, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11545251

RESUMEN

Although airway inflammation and airway hyperreactivity are observed after allergen inhalation both in allergic humans and animals, little is known about the mechanisms by which inflammatory cells can contribute to allergen-induced airway hyperreactivity. To understand how inflammatory cell infiltration can contribute to airway hyperreactivity, the location of these cells within the airways may be crucial Using a guinea pig model of acute allergic asthma, we investigated the inflammatory cell infiltration in different airway compartments at 6 and 24 h (i.e. after the early and the late asthmatic reaction, respectively) after allergen or saline challenge in relation to changes in airway reactivity (AR) to histamine. At 6 h after allergen challenge, a threefold (p < 0.01) increase in the AR to histamine was observed. At 24 h after challenge, the AR to histamine was lower, but still significantly enhanced (1.6-fold, p < 0.05). Adventitial eosinophil and neutrophil numbers in both bronchi and bronchioli were significantly increased at 6 h post-allergen provocation as compared with saline (p < 0.01 for all), while there was a strong tendency to enhanced eosinophils in the bronchial submucosa at this time point (p = 0.08). At 24h after allergen challenge, the eosinophilic and neutrophilic cell infiltration was reduced. CD3+ T lymphocytes were increased in the adventitial compartment of the large airways (p < 0.05) and in the parenchyma (p < 0.05) at 24h post-allergen, while numbers of CD8+ cells did not differ from saline treatment at any time point post-provocation. The results indicate that, after allergen provocation, inflammatory cell numbers in the airways are mainly elevated in the adventitial compartment. The adventitial inflammation could be important for the development of allergen-induced airway hyperreactivity.


Asunto(s)
Asma/inmunología , Eosinófilos/inmunología , Pulmón/inmunología , Neutrófilos/inmunología , Linfocitos T/inmunología , Animales , Antígenos/inmunología , Modelos Animales de Enfermedad , Cobayas , Liberación de Histamina/inmunología , Masculino , Ovalbúmina/inmunología , Factores de Tiempo
18.
Br J Pharmacol ; 133(8): 1235-42, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11498508

RESUMEN

1. In the present study, the roles of nitric oxide (NO) and superoxide anions (O2(-)) in allergen-induced airway hyperreactivity (AHR) after the late asthmatic reaction (LAR) were investigated ex vivo, by examining the effects of the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) and superoxide dismutase (SOD) on the responsiveness to methacholine of isolated perfused guinea-pig tracheae from unchallenged (control) animals and from animals 24 h after ovalbumin challenge. 2. At 24 h after allergen challenge, the animals developed AHR in vivo, as indicated by a mean 2.63 +/- 0.54 fold (P < 0.05) increase in sensitivity to histamine inhalation. 3. Compared to unchallenged controls, tracheal preparations from the ovalbumin-challenged guinea-pigs displayed a significant 1.8 fold (P < 0.01) increase in the maximal response (E(max)) to methacholine, both after intraluminal (IL) and extraluminal (EL) administration of the agonist. No changes were observed in the sensitivity (pEC(50)) to the agonist. Consequently, the DeltapEC(50) (EL-IL), as a measure of epithelial integrity, was unchanged. 4. In the presence of L-NAME (100 microM, IL), tracheae from control guinea-pigs showed a 1.6 fold (P < 0.05) increase in the E(max) of IL methacholine. By contrast, the E(max) of IL methacholine was significantly decreased in the presence of 100 u ml(-1) EL SOD (54% of control, P < 0.01). 5. Remarkably, the increased responsiveness to IL methacholine at 24 h after allergen challenge was reversed by L-NAME to control (P < 0.01), and a similar effect was observed with SOD (P < 0.01). 6. The results indicate that both NO and O2(-) are involved in the tracheal hyperreactivity to methacholine after the LAR, possibly by promoting airway smooth muscle contraction through the formation of peroxynitrite.


Asunto(s)
Alérgenos/inmunología , Asma/metabolismo , Hiperreactividad Bronquial/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Animales , Asma/inducido químicamente , Asma/inmunología , Asma/fisiopatología , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Broncoconstrictores/farmacología , Cobayas , Histamina/farmacología , Cloruro de Metacolina/farmacología , NG-Nitroarginina Metil Éster/farmacología , Ovalbúmina/inmunología , Perfusión , Respiración/efectos de los fármacos , Superóxido Dismutasa/farmacología , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Tráquea/fisiopatología
19.
Eur J Pharmacol ; 419(2-3): 253-9, 2001 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-11426849

RESUMEN

Prolonged (18 h) incubation of isolated bovine tracheal smooth muscle with the beta2-adrenoceptor agonist fenoterol (10 microM) induced desensitization of isoprenaline-induced adenylyl cyclase activity in bovine tracheal smooth muscle membranes, characterized by a 25% decrease in maximal effect (Emax) (P < 0.05), while the sensitivity to the agonist (pEC50) was unchanged. The Emax value of isoprenaline-induced smooth muscle relaxation of submaximal methacholine-induced contractile tones was similarly reduced by about 25% (P < 0.001), while the pEC50 value was diminished by 1.0 log unit (P < 0.001). As determined by 30 microM gallamine-induced muscarinic M2 receptor antagonism and pertussis toxin-induced inactivation of G(i alpha), muscarinic M2 receptor-mediated functional antagonism did not play a role in isoprenaline-induced relaxation of bovine tracheal smooth muscle contracted by methacholine, both in control and in 18-h fenoterol-treated tissue. In line with these observations, we found no enhanced muscarinic M2 receptor-mediated inhibition of 1 microM forskolin-stimulated adenylyl cyclase activity after 18-h fenoterol treatment. These data indicate that 18-h fenoterol treatment of bovine tracheal smooth muscle induces beta2-adrenoceptor desensitization and reduced functional antagonism of methacholine-induced contraction by beta-adrenoceptor agonists, without a change of muscarinic M2 receptor function.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Fenoterol/farmacología , Músculo Liso/efectos de los fármacos , Receptores Adrenérgicos beta/efectos de los fármacos , Receptores Muscarínicos/efectos de los fármacos , Toxina de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Animales , Bovinos , Interacciones Farmacológicas , Cloruro de Metacolina/farmacología , Agonistas Muscarínicos/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/enzimología , Toxina del Pertussis , Receptor Muscarínico M2 , Tráquea , Factores de Virulencia de Bordetella/farmacología
20.
Br J Pharmacol ; 131(5): 915-20, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11053211

RESUMEN

According to the two state receptor model, the beta(2)-adrenergic receptor (beta(2)-AR) isomerizes between an inactive state and a constitutively active state, which couples to the stimulatory G-protein in the absence of agonist. In bovine tracheal smooth muscle (BTSM), we investigated the effect of short and long term beta(2)-AR activation by fenoterol on constitutive receptor activity. Preincubation of the BTSM strips for 5 min, 30 min and 18 h with 10 microM fenoterol, followed by extensive washout (3 h, 37 degrees C), caused a rapid and time-dependent inhibition of KCl-induced contraction, reaching 68+/-10, 51+/-6 and 46+/-4% of control, respectively, at 40 mM KCl (P:<0.05 all). At all time points, the EC(50) values to KCl were significantly reduced as well. Preincubation of BTSM with 0.1, 1.0 and 10 microM fenoterol during 18 h caused a concentration-dependent decrease of the 40 mM KCl response to 70+/-5, 47+/-12 and 43+/-9% of control, respectively (P:<0.05 all). The reduced KCl contractions were reversed in the presence of 1 microM timolol. Moreover, the sensitivity to KCl in the presence of timolol was enhanced after fenoterol incubation. Inverse agonism was also found for other beta-blockers, with a rank order of efficacy of pindolol >/=timolol=propranolol>alprenolol>/=sotalol>labetalol. At 25 mM KCl-induced tone, the contraction induced by cumulative timolol administration was competitively antagonized by the less efficacious inverse agonist labetalol, indicating that the fenoterol-induced effects cannot be explained by residual beta-agonist binding. In conclusion, fenoterol treatment of BTSM causes a time- and concentration-dependent development of constitutive beta(2)-AR activity, which can be reversed by various inverse agonists. The beta-agonist-induced changes could represent a novel regulation mechanism of beta(2)-AR activity.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Músculo Liso/efectos de los fármacos , Receptores Adrenérgicos beta 2/efectos de los fármacos , Tráquea/efectos de los fármacos , Antagonistas Adrenérgicos beta/farmacología , Animales , Bovinos , Relación Dosis-Respuesta a Droga , Fenoterol/farmacología , Técnicas In Vitro , Contracción Muscular/efectos de los fármacos , Músculo Liso/fisiología , Cloruro de Potasio/farmacología , Receptores Adrenérgicos beta 2/fisiología , Timolol/farmacología , Tráquea/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA