Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
EMBO Mol Med ; 16(1): 158-184, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177532

RESUMEN

Elevated peripheral blood and tumor-infiltrating neutrophils are often associated with a poor patient prognosis. However, therapeutic strategies to target these cells are difficult to implement due to the life-threatening risk of neutropenia. In a genetically engineered mouse model of lung adenocarcinoma, tumor-associated neutrophils (TAN) demonstrate tumor-supportive capacities and have a prolonged lifespan compared to circulating neutrophils. Here, we show that tumor cell-derived GM-CSF triggers the expression of the anti-apoptotic Bcl-xL protein and enhances neutrophil survival through JAK/STAT signaling. Targeting Bcl-xL activity with a specific BH3 mimetic, A-1331852, blocked the induced neutrophil survival without impacting their normal lifespan. Specifically, oral administration with A-1331852 decreased TAN survival and abundance, and reduced tumor growth without causing neutropenia. We also show that G-CSF, a drug used to combat neutropenia in patients receiving chemotherapy, increased the proportion of young TANs and augmented the anti-tumor effect resulting from Bcl-xL blockade. Finally, our human tumor data indicate the same role for Bcl-xL on pro-tumoral neutrophil survival. These results altogether provide preclinical evidence for safe neutrophil targeting based on their aberrant intra-tumor longevity.


Asunto(s)
Neoplasias Pulmonares , Neutropenia , Animales , Humanos , Ratones , Envejecimiento , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína bcl-X , Línea Celular Tumoral , Neoplasias Pulmonares/patología , Neutropenia/tratamiento farmacológico , Neutropenia/metabolismo , Neutropenia/patología , Neutrófilos/metabolismo
2.
J Control Release ; 353: 317-326, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470334

RESUMEN

Despite advances in targeted therapies and immunotherapy in lung cancer, chemotherapy remains the backbone of treatment in most patients at different stages of the disease. Inhaled chemotherapy is a promising strategy to target lung tumours and to limit the induced severe systemic toxicities. Cisplatin dry powder for inhalation (CIS-DPI) was tested as an innovative way to deliver cisplatin locally via the pulmonary route with minimal systemic toxicities. In vivo, CIS-DPI demonstrated a dose-dependent antiproliferative activity in the M109 orthotopic murine lung tumour model and upregulated the immune checkpoint PD-L1 on lung tumour cells. Combination of CIS-DPI with the immune checkpoint inhibitor anti-PD1 showed significantly reduced tumour size, increased the number of responders and prolonged median survival over time in comparison to the anti-PD1 monotherapy. Furthermore, the CIS-DPI and anti-PD1 combination induced an intra-tumour recruitment of conventional dendritic cells and tumour infiltrating lymphocytes, highlighting an anti-tumour immune response. This study demonstrates that combining CIS-DPI with anti-PD1 is a promising strategy to improve lung cancer therapy.


Asunto(s)
Cisplatino , Neoplasias Pulmonares , Humanos , Animales , Ratones , Cisplatino/uso terapéutico , Polvos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Pulmón/patología , Inmunidad
3.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580932

RESUMEN

BACKGROUND: Activin-A, a transforming growth factor ß family member, is secreted by many cancer types and is often associated with poor disease prognosis. Previous studies have shown that Activin-A expression can promote cancer progression and reduce the intratumoral frequency of cytotoxic T cells. However, the underlying mechanisms and the significance of Activin-A expression for cancer therapies are unclear. METHODS: We analyzed the expression of the Activin-A encoding gene INHBA in melanoma patients and the influence of its gain- or loss-of-function on the immune infiltration and growth of BRAF-driven YUMM3.3 and iBIP2 mouse melanoma grafts and in B16 models. Using antibody depletion strategies, we investigated the dependence of Activin-A tumor-promoting effect on different immune cells. Immune-regulatory effects of Activin-A were further characterized in vitro and by an adoptive transfer of T cells. Finally, we assessed INHBA expression in melanoma patients who received immune checkpoint therapy and tested whether it impairs the response in preclinical models. RESULTS: We show that Activin-A secretion by melanoma cells inhibits adaptive antitumor immunity irrespective of BRAF status by inhibiting CD8+ T cell infiltration indirectly and even independently of CD4 T cells, at least in part by attenuating the production of CXCL9/10 by myeloid cells. In addition, we show that Activin-A/INHBA expression correlates with anti-PD1 therapy resistance in melanoma patients and impairs the response to dual anti-cytotoxic T-Lymphocyte associated protein 4/anti-PD1 treatment in preclinical models. CONCLUSIONS: Our findings suggest that strategies interfering with Activin-A induced immune-regulation offer new therapeutic opportunities to overcome CD8 T cell exclusion and immunotherapy resistance.


Asunto(s)
Activinas , Melanoma , Activinas/metabolismo , Activinas/uso terapéutico , Animales , Linfocitos T CD8-positivos , Humanos , Inmunidad Celular , Subunidades beta de Inhibinas , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/inmunología , Ratones , Proteínas Proto-Oncogénicas B-raf/metabolismo
4.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35522219

RESUMEN

Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.


Asunto(s)
Neoplasias , Neutrófilos , Humanos , Inmunidad Innata , Inflamación , Neoplasias/genética , Fenotipo
5.
Semin Immunol ; 57: 101583, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34963565

RESUMEN

Neutrophils are critical innate immune cells for the host anti-bacterial defense. Throughout their lifecycle, neutrophils are exposed to different microenvironments and modulate their metabolism to survive and sustain their functions. Although tumor cell metabolism has been intensively investigated, how neutrophil metabolism is affected in cancer remains largely to be discovered. Neutrophils are described as mainly glycolytic cells. However, distinct tumor-associated neutrophil (TAN) states may co-exist in tumors and adapt their metabolism to exert different or even opposing activities ranging from tumor cell killing to tumor support. In this review, we gather evidence about the metabolic mechanisms that underly TANs' pro- or anti-tumoral functions in cancer. We first discuss how tumor-secreted factors and the heterogenous tumor microenvironment can have a strong impact on TAN metabolism. We then describe alternative metabolic pathways used by TANs to exert their functions in cancer, from basic glycolysis to more recently-recognized but less understood metabolic shifts toward mitochondrial oxidative metabolism, lipid and amino acid metabolism and even autophagy. Last, we discuss promising strategies targeting neutrophil metabolism to combat cancer.


Asunto(s)
Neoplasias , Neutrófilos , Humanos , Redes y Vías Metabólicas , Microambiente Tumoral
6.
Sci Transl Med ; 13(606)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380768

RESUMEN

Immune checkpoint blockade (ICB) with PD-1 or PD-L1 antibodies has been approved for the treatment of non-small cell lung cancer (NSCLC). However, only a minority of patients respond, and sustained remissions are rare. Both chemotherapy and antiangiogenic drugs may improve the efficacy of ICB in mouse tumor models and patients with cancer. Here, we used genetically engineered mouse models of Kras G12D/+;p53 -/- NSCLC, including a mismatch repair-deficient variant (Kras G12D/+;p53 -/-;Msh2 -/-) with higher mutational burden, and longitudinal imaging to study tumor response and resistance to combinations of ICB, antiangiogenic therapy, and chemotherapy. Antiangiogenic blockade of vascular endothelial growth factor A and angiopoietin-2 markedly slowed progression of autochthonous lung tumors, but contrary to findings in other cancer types, addition of a PD-1 or PD-L1 antibody was not beneficial and even accelerated progression of a fraction of the tumors. We found that antiangiogenic treatment facilitated tumor infiltration by PD-1+ regulatory T cells (Tregs), which were more efficiently targeted by the PD-1 antibody than CD8+ T cells. Both tumor-associated macrophages (TAMs) of monocyte origin, which are colony-stimulating factor 1 receptor (CSF1R) dependent, and TAMs of alveolar origin, which are sensitive to cisplatin, contributed to establish a transforming growth factor-ß-rich tumor microenvironment that supported PD-1+ Tregs Dual TAM targeting with a combination of a CSF1R inhibitor and cisplatin abated Tregs, redirected the PD-1 antibody to CD8+ T cells, and improved the efficacy of antiangiogenic immunotherapy, achieving regression of most tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Antígeno B7-H1 , Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular
7.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34301813

RESUMEN

The immune checkpoint blockade-based immunotherapies are revolutionizing cancer management. Tumor-associated neutrophils (TANs) were recently highlighted to have a pivotal role in modulating the tumor microenvironment and the antitumor immune response. However, these cells were largely ignored during the development of therapies based on programmed cell death receptor or ligand-1 and cytotoxic T lymphocyte antigen-4 immune checkpoint inhibitors (ICIs). Latest evidences of neutrophil functional diversity in tumor raised many questions and suggest that targeting these cells can offer new treatment opportunities in the context of ICI development. Here, we summarized key information on TAN origin, function, and plasticity that should be considered when developing ICIs and provide a detailed review of the ongoing clinical trials that combine ICIs and a second compound that might affect or be affected by TANs. This review article synthetizes important notions from the literature demonstrating that: (1) Cancer development associates with a profound alteration of neutrophil biogenesis and function that can predict and interfere with the response to ICIs, (2) Neutrophil infiltration in tumor is associated with key features of resistance to ICIs, and (3) TANs play an important role in resistance to antiangiogenic drugs reducing their clinical benefit when used in combination with ICIs. Finally, exploring the clinical/translational aspects of neutrophil impact on the response to ICIs offers the opportunity to propose new translational research avenues to better understand TAN biology and treat patients.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/sangre , Neutrófilos/metabolismo , Humanos
8.
Cancer Res ; 81(9): 2345-2357, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33753374

RESUMEN

Neutrophils are the most abundant circulating leucocytes and are essential for innate immunity. In cancer, pro- or antitumor properties have been attributed to tumor-associated neutrophils (TAN). Here, focusing on TAN accumulation within lung tumors, we identify GLUT1 as an essential glucose transporter for their tumor supportive behavior. Compared with normal neutrophils, GLUT1 and glucose metabolism increased in TANs from a mouse model of lung adenocarcinoma. To elucidate the impact of glucose uptake on TANs, we used a strategy with two recombinases, dissociating tumor initiation from neutrophil-specific Glut1 deletion. Loss of GLUT1 accelerated neutrophil turnover in tumors and reduced a subset of TANs expressing SiglecF. In the absence of GLUT1 expression by TANs, tumor growth was diminished and the efficacy of radiotherapy was augmented. Our results demonstrate the importance of GLUT1 in TANs, which may affect their pro- versus antitumor behavior. These results also suggest targeting metabolic vulnerabilities to favor antitumor neutrophils. SIGNIFICANCE: Lung tumor support and radiotherapy resistance depend on GLUT1-mediated glucose uptake in tumor-associated neutrophils, indicating that metabolic vulnerabilities should be considered to target both tumor cells as well as innate immune cells. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2345/F1.large.jpg.


Asunto(s)
Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/radioterapia , Proliferación Celular/genética , Transportador de Glucosa de Tipo 1/deficiencia , Transportador de Glucosa de Tipo 1/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/radioterapia , Neutrófilos/inmunología , Insuficiencia del Tratamiento , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Estudios de Casos y Controles , Línea Celular Tumoral , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 1/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
9.
Oncoimmunology ; 10(1): 1876597, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33628622

RESUMEN

The anti-Ly6G antibody is used to deplete Ly6Gpos neutrophils and study their role in diverse pathologies. However, depletion is never absolute, as Ly6Glow neutrophils resistant to depletion rapidly emerge. Studying the functionality of these residual neutrophils is necessary to interpret anti-Ly6G-based experimental designs. In vitro, we found anti-Ly6G binding induced Ly6G internalization, surface Ly6G paucity, and primed the oxidative burst of neutrophils upon TNF α co-stimulation. In vivo, we found neutrophils resistant to anti-Ly6G depletion exhibited anti-neutrophil-cytoplasmic-antibodies. In the pre-clinical KrasLox-STOP-Lox-G12D/WT; Trp53Flox/Flox mouse lung tumor model, abnormal neutrophil accumulation and aging was accompanied with an N2-like SiglecFpos polarization and ly6g downregulation. Consequently, SiglecFpos neutrophils exposed to anti-Ly6G reverted to Ly6Glow and were resistant to depletion. Noting that anti-Ly6G mediated neutrophil depletion alone had no anti-tumor effect, we found a long-lasting rate of tumor regression (50%) by combining anti-Ly6G with radiation-therapy, in this model reputed to be refractory to standard anticancer therapies. Mechanistically, anti-Ly6G regulated neutrophil aging while radiation-therapy enhanced the homing of anti-Ly6G-boundSiglecFneg neutrophils to tumors. This anti-tumor effect was recapitulated by G-CSF administration prior to RT and abrogated with an anti-TNFα antibody co-administration. In summary, we report that incomplete depletion of neutrophils using targeted antibodies can intrinsically promote their oxidative activity. This effect depends on antigen/antibody trafficking and can be harnessed locally using select delivery of radiation-therapy to impair tumor progression. This underutilized aspect of immune physiology may be adapted to expand the scope of neutrophil-related research.


Asunto(s)
Antígenos Ly , Neutrófilos , Animales , Anticuerpos Anticitoplasma de Neutrófilos , Modelos Animales de Enfermedad , Ratones , Inhibidores del Factor de Necrosis Tumoral
10.
Cell Rep ; 32(12): 108164, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966785

RESUMEN

Myeloid cells co-expressing the markers CD11b, Ly-6G, and SiglecF can be found in large numbers in murine lung adenocarcinomas and accelerate cancer growth by fostering tumor cell invasion, angiogenesis, and immunosuppression; however, some of these cells' fundamental features remain unexplored. Here, we show that tumor-infiltrating CD11b+ Ly-6G+ SiglecFhigh cells are bona fide mature neutrophils and therefore differ from other myeloid cells, including SiglecFhigh eosinophils, SiglecFhigh macrophages, and CD11b+ Ly-6G+ myeloid-derived suppressor cells. We further show that SiglecFhigh neutrophils gradually accumulate in growing tumors, where they can live for several days; this lifespan is in marked contrast to that of their SiglecFlow counterparts and neutrophils in general, which live for several hours only. Together, these findings reveal distinct attributes for tumor-promoting SiglecFhigh neutrophils and help explain their deleterious accumulation in the tumor bed.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Antígenos Ly/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neutrófilos/patología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Pulmón/patología , Masculino , Ratones Endogámicos C57BL
11.
Nat Commun ; 11(1): 2762, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488020

RESUMEN

Neutrophils are an essential part of the innate immune system. To study their importance, experimental studies often aim to deplete these cells, generally by injecting anti-Ly6G or anti-Gr1 antibodies. However, these approaches are only partially effective, transient or lack specificity. Here we report that neutrophils remaining after anti-Ly6G treatment are newly derived from the bone marrow, instead of depletion escapees. Mechanistically, newly generated, circulating neutrophils have lower Ly6G membrane expression, and consequently reduced targets for anti-Ly6G-mediated depletion. To overcome this limitation, we develop a double antibody-based depletion strategy that enhances neutrophil elimination by anti-Ly6G treatment. This approach achieves specific, durable and controlled reduction of neutrophils in vivo, and may be suitable for studying neutrophil function in experimental models.


Asunto(s)
Antígenos Ly/inmunología , Neutrófilos/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Antígenos Ly/genética , Médula Ósea/inmunología , Muerte Celular , Modelos Animales de Enfermedad , Expresión Génica , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo
12.
Elife ; 92020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32571479

RESUMEN

Glucose utilization increases in tumors, a metabolic process that is observed clinically by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). However, is increased glucose uptake important for tumor cells, and which transporters are implicated in vivo? In a genetically-engineered mouse model of lung adenocarcinoma, we show that the deletion of only one highly expressed glucose transporter, Glut1 or Glut3, in cancer cells does not impair tumor growth, whereas their combined loss diminishes tumor development. 18F-FDG-PET analyses of tumors demonstrate that Glut1 and Glut3 loss decreases glucose uptake, which is mainly dependent on Glut1. Using 13C-glucose tracing with correlated nanoscale secondary ion mass spectrometry (NanoSIMS) and electron microscopy, we also report the presence of lamellar body-like organelles in tumor cells accumulating glucose-derived biomass, depending partially on Glut1. Our results demonstrate the requirement for two glucose transporters in lung adenocarcinoma, the dual blockade of which could reach therapeutic responses not achieved by individual targeting.


Asunto(s)
Adenocarcinoma del Pulmón/fisiopatología , Eliminación de Gen , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 2/genética , Glucosa/metabolismo , Animales , Línea Celular Tumoral , Femenino , Fluorodesoxiglucosa F18/química , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 2/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Tomografía de Emisión de Positrones , Espectrometría de Masa de Ion Secundario
13.
Eur J Cardiothorac Surg ; 58(4): 783-791, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32372095

RESUMEN

OBJECTIVES: Malignant pleural mesothelioma (MPM) is a deadly disease with limited treatment options. Approaches to enhance patient immunity against MPM have been tested but shown variable results. Previously, we have demonstrated interesting vascular modulating properties of low-dose photodynamic therapy (L-PDT) on MPM. Here, we hypothesized that L-PDT vascular modulation could favour immune cell extravasation in MPM and improve tumour control in combination with immune checkpoint inhibitors. METHODS: First, we assessed the impact of L-PDT on vascular endothelial E-selectin expression, a key molecule for immune cell extravasation, in vitro and in a syngeneic murine model of MPM. Second, we characterized the tumour immune cell infiltrate by 15-colour flow cytometry analysis 2 and 7 days after L-PDT treatment of the murine MPM model. Third, we determined how L-PDT combined with immune checkpoint inhibitor anti-CTLA4 affected tumour growth in a murine MPM model. RESULTS: L-PDT significantly enhanced E-selectin expression by endothelial cells in vitro and in vivo. This correlated with increased CD8+ T cells and activated antigen-presenting cells (CD11b+ dendritic cells and macrophages) infiltration in MPM. Also, compared to anti-CTLA4 that only affects tumour growth, the combination of L-PDT with anti-CTLA4 caused complete MPM regression in 37.5% of animals. CONCLUSIONS: L-PDT enhances E-selectin expression in the MPM endothelium, which favours immune infiltration of tumours. The combination of L-PDT with immune checkpoint inhibitor anti-CTLA4 allows best tumour control and regression.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma , Fotoquimioterapia , Neoplasias Pleurales , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células Endoteliales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mesotelioma/tratamiento farmacológico , Ratones , Neoplasias Pleurales/tratamiento farmacológico
14.
Nat Immunol ; 21(3): 298-308, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066953

RESUMEN

Depleting regulatory T cells (Treg cells) to counteract immunosuppressive features of the tumor microenvironment (TME) is an attractive strategy for cancer treatment; however, autoimmunity due to systemic impairment of their suppressive function limits its therapeutic potential. Elucidating approaches that specifically disrupt intratumoral Treg cells is direly needed for cancer immunotherapy. We found that CD36 was selectively upregulated in intrautumoral Treg cells as a central metabolic modulator. CD36 fine-tuned mitochondrial fitness via peroxisome proliferator-activated receptor-ß signaling, programming Treg cells to adapt to a lactic acid-enriched TME. Genetic ablation of Cd36 in Treg cells suppressed tumor growth accompanied by a decrease in intratumoral Treg cells and enhancement of antitumor activity in tumor-infiltrating lymphocytes without disrupting immune homeostasis. Furthermore, CD36 targeting elicited additive antitumor responses with anti-programmed cell death protein 1 therapy. Our findings uncover the unexplored metabolic adaptation that orchestrates the survival and functions of intratumoral Treg cells, and the therapeutic potential of targeting this pathway for reprogramming the TME.


Asunto(s)
Antígenos CD36/inmunología , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Apoptosis/inmunología , Antígenos CD36/deficiencia , Antígenos CD36/genética , Línea Celular Tumoral , Femenino , Homeostasis/inmunología , Humanos , Inmunoterapia , Metabolismo de los Lípidos/genética , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/metabolismo , Neoplasias/patología , PPAR-beta/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Microambiente Tumoral/inmunología
15.
Nat Cell Biol ; 21(11): 1403-1412, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31685984

RESUMEN

The development of effective therapies against brain metastasis is currently hindered by limitations in our understanding of the molecular mechanisms driving it. Here we define the contributions of tumour-secreted exosomes to brain metastatic colonization and demonstrate that pre-conditioning the brain microenvironment with exosomes from brain metastatic cells enhances cancer cell outgrowth. Proteomic analysis identified cell migration-inducing and hyaluronan-binding protein (CEMIP) as elevated in exosomes from brain metastatic but not lung or bone metastatic cells. CEMIP depletion in tumour cells impaired brain metastasis, disrupting invasion and tumour cell association with the brain vasculature, phenotypes rescued by pre-conditioning the brain microenvironment with CEMIP+ exosomes. Moreover, uptake of CEMIP+ exosomes by brain endothelial and microglial cells induced endothelial cell branching and inflammation in the perivascular niche by upregulating the pro-inflammatory cytokines encoded by Ptgs2, Tnf and Ccl/Cxcl, known to promote brain vascular remodelling and metastasis. CEMIP was elevated in tumour tissues and exosomes from patients with brain metastasis and predicted brain metastasis progression and patient survival. Collectively, our findings suggest that targeting exosomal CEMIP could constitute a future avenue for the prevention and treatment of brain metastasis.


Asunto(s)
Neoplasias Encefálicas/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Hialuronoglucosaminidasa/genética , Neovascularización Patológica/genética , Microambiente Tumoral/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Quimiocina CCL1/genética , Quimiocina CCL1/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Exosomas/patología , Humanos , Hialuronoglucosaminidasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Metástasis de la Neoplasia , Neovascularización Patológica/metabolismo , Neovascularización Patológica/mortalidad , Neovascularización Patológica/patología , Transducción de Señal , Análisis de Supervivencia , Carga Tumoral , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Oncotarget ; 9(64): 32331-32345, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30190790

RESUMEN

The epithelial-mesenchymal transition-inducing transcription factor Snail contributes to tumor progression in different malignancies. In the present study, we used a transcriptomics approach to elucidate the mechanism of Snail-mediated tumor growth promotion in a KrasLSL-G12D/+;p53fl/fl mouse model of lung adenocarcinoma. We discovered that Snail mediated the downregulation of the imprinted Dlk1-Dio3 locus, a complex genomic region containing protein-coding genes and non-coding RNAs that has been linked to tumor malignancy in lung cancer patients. The Dlk1-Dio3 locus repression mediated by Snail was found to occur specifically in several populations of tumor-infiltrating immune cells. It could be reproduced in primary splenocytes upon ex vivo culture with conditioned medium from Snail-expressing cancer cell lines, which suggests that a Snail-induced soluble factor secreted by the cancer cells mediates the Dlk1-Dio3 locus repression in immune cells, particularly in lymphocytes. Our findings furthermore point towards the contribution of Snail to an inflammatory tumor microenvironment, which is in line with our previous report of the Snail-mediated recruitment of pro-tumorigenic neutrophils to the lung tumors. This underlines an important role for Snail in influencing the immune compartment of lung tumors and thus contributing to disease progression.

17.
Front Oncol ; 8: 256, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30038899

RESUMEN

Immune-based anti-cancer strategies combined with radiation therapy (RT) are actively being investigated but many questions remain, such as the ideal treatment scheme and whether a potent immune response can be generated both locally and systemically. In this context, tumor-associated tertiary lymphoid structures (TLS) have become a subject of research. While TLS are present in several types of cancer with strong similarities, they are especially relevant in medullary breast carcinoma (MBC). This suggests that MBC patients are ideally suited for investigating this question and may benefit from adapted therapeutic options. As RT is a corner-stone of MBC treatment, investigating interactions between RT and TLS composition is also clinically relevant. We thus first characterized the lymphoid structures associated with MBC in a patient case report and demonstrated that they closely resemble the TLS observed in a genetical mouse model. In this model, we quantitatively and qualitatively investigated the cellular composition of the tumor-associated TLS. Finally, we investigated TLS regulation after hypo-fractionated RT and showed that RT induced their acute and transient depletion, followed by a restoration phase. This study is the first work to bring a comprehensive and timely characterization of tumor-associated TLS in basal conditions and after RT. It highlights cellular targets (i.e., Tregs) that could be selectively modulated in subsequent studies to optimize anti-tumor immune response. The study of TLS modulation is worth further investigation in the context of RT and personalized medicine.

18.
FEBS J ; 285(16): 2926-2943, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29893496

RESUMEN

Solute carriers of the glucose transporter (GLUT) family mediate the first step for cellular glucose usage. The upregulation of GLUTs has been reported in numerous cancer types as a result of perturbation of gene expression or protein relocalization or stabilization. Because they enable to sustain the energy demand required by tumor cells for various biochemical programs, they are promising targets for the development of anticancer strategies. Recently, important biological insights have come from the fine crystal structure determination of several GLUTs; these advances will likely catalyze the development of new selective inhibitory compounds. Furthermore, deregulated glucose metabolism of nontumor cells in the tumor mass is beginning to be appreciated and could have major implications for our understanding of how glucose uptake by specific cell types influences the behavior of neighboring cells in the same microenvironment. In this review, we discuss some of the deregulation mechanisms of glucose transporters, their genetic and pharmacological targeting in cancer, and new functions they may have in nontumor cells of the tumor environment or beyond glucose uptake for glycolysis.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Antineoplásicos/farmacología , Transporte Biológico , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Glucólisis/fisiología , Humanos , Neoplasias/patología , Neoplasias/terapia
19.
J Thorac Oncol ; 13(3): 387-398, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29223537

RESUMEN

INTRODUCTION: NSCLC is the leading cause of cancer mortality. Recent retrospective clinical analyses suggest that blocking the receptor activator of NF-κB (RANK) signaling pathway inhibits the growth of NSCLC and might represent a new treatment strategy. METHODS: Receptor activator of NF-κB gene (RANK) and receptor activator of NF-κB ligand gene (RANKL) expression in human lung adenocarcinoma was interrogated from publicly available gene expression data sets. Several genetically engineered mouse models were used to evaluate treatment efficacy of RANK-Fc to block RANKL, with primary tumor growth measured longitudinally using microcomputed tomography. A combination of RANKL blockade with cisplatin was tested to mirror an ongoing clinical trial. RESULTS: In human lung adenocarcinoma data sets, RANKL expression was associated with decreased survival and KRAS mutation, with the highest levels in tumors with co-occurring KRAS and liver kinase B1 gene (LKB1) mutations. In KrasLSL-G12D/WT, KrasLSL-G12D/WT; Lkb1Flox/Flox and KrasLSL-G12D/WT; p53Flox/Flox mouse models of lung adenocarcinoma, we monitored an impaired progression of tumors upon RANKL blockade. Despite elevated expression of RANKL and RANK in immune cells, treatment response was not associated with major changes in the tumor immune microenvironment. Combined RANK-Fc with cisplatin revealed increased efficacy compared with that of single agents in p53- but not in Lkb1-deficient tumors. CONCLUSIONS: RANKL blocking agents impair the growth of primary lung tumors in several mouse models of lung adenocarcinoma and suggest that patients with KRAS-mutant lung tumors will benefit from such treatments.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Ingeniería Genética/métodos , Neoplasias Pulmonares/genética , Ligando RANK/genética , Adenocarcinoma del Pulmón/patología , Animales , Modelos Animales de Enfermedad , Neoplasias Pulmonares/patología , Ratones , Estudios Retrospectivos , Transducción de Señal
20.
Cell Rep ; 21(11): 3190-3204, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29241546

RESUMEN

Understanding the immune compartment of tumors facilitates the development of revolutionary new therapies. We used a Kras(G12D)-driven mouse model of lung cancer to establish an immune signature and identified a contribution of Gr1+ neutrophils to disease progression. Depletion experiments showed that Gr1+ cells (1) favor tumor growth, (2) reduce T cell homing and prevent successful anti-PD1 immunotherapy, and (3) alter angiogenesis, leading to hypoxia and sustained Snail expression in lung cancer cells. In turn, Snail accelerated disease progression and increased intratumoral Cxcl2 secretion and neutrophil infiltration. Cxcl2 was produced mainly by neutrophils themselves in response to a factor secreted by Snail-expressing tumor cells. We therefore propose a vicious cycle encompassing neutrophils and Snail to maintain a deleterious tumor microenvironment.


Asunto(s)
Adenocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neovascularización Patológica/genética , Neutrófilos/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Factores de Transcripción de la Familia Snail/inmunología , Adenocarcinoma/inmunología , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Anticuerpos Monoclonales/farmacología , Antígenos Ly/genética , Antígenos Ly/inmunología , Quimiocina CXCL2/genética , Quimiocina CXCL2/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Humanos , Procedimientos de Reducción del Leucocitos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Neovascularización Patológica/inmunología , Neovascularización Patológica/mortalidad , Neovascularización Patológica/patología , Neutrófilos/efectos de los fármacos , Neutrófilos/patología , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/inmunología , Transducción de Señal , Factores de Transcripción de la Familia Snail/genética , Análisis de Supervivencia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA