Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Dis Model Mech ; 17(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214058

RESUMEN

In the past decade, Zika virus (ZIKV) emerged as a global public health concern. Although adult infections are typically mild, maternal infection can lead to adverse fetal outcomes. Understanding how ZIKV proteins disrupt development can provide insights into the molecular mechanisms of disease caused by this virus, which includes microcephaly. In this study, we generated a toolkit to ectopically express ZIKV proteins in vivo in Drosophila melanogaster in a tissue-specific manner using the GAL4/UAS system. We used this toolkit to identify phenotypes and potential host pathways targeted by the virus. Our work identified that expression of most ZIKV proteins caused scorable phenotypes, such as overall lethality, gross morphological defects, reduced brain size and neuronal function defects. We further used this system to identify strain-dependent phenotypes that may have contributed to the increased pathogenesis associated with the outbreak of ZIKV in the Americas in 2015. Our work demonstrates the use of Drosophila as an efficient in vivo model to rapidly decipher how pathogens cause disease and lays the groundwork for further molecular study of ZIKV pathogenesis in flies.


Asunto(s)
Microcefalia , Infección por el Virus Zika , Virus Zika , Animales , Virus Zika/metabolismo , Drosophila , Drosophila melanogaster , Microcefalia/epidemiología , Microcefalia/etiología
2.
bioRxiv ; 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37163061

RESUMEN

In the past decade, Zika virus (ZIKV) emerged as a global public health concern. While adult infections are typically mild, maternal infection can lead to adverse fetal outcomes. Understanding how ZIKV proteins disrupt development can provide insights into the molecular mechanisms of symptoms caused by this virus including microcephaly. In this study, we generated a toolkit to ectopically express Zika viral proteins in vivo in Drosophila melanogaster in a tissue-specific manner using the GAL4/UAS system. We use this toolkit to identify phenotypes and host pathways targeted by the virus. Our work identified that expression of most ZIKV proteins cause scorable phenotypes, such as overall lethality, gross morphological defects, reduced brain size, and neuronal function defects. We further use this system to identify strain-dependent phenotypes that may contribute to the increased pathogenesis associated with the more recent outbreak of ZIKV in the Americas. Our work demonstrates Drosophila's use as an efficient in vivo model to rapidly decipher how pathogens cause disease and lays the groundwork for further molecular study of ZIKV pathogenesis in flies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA