Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Res ; 33(3): 215-228, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36627348

RESUMEN

Only a small proportion of patients with triple-negative breast cancer benefit from immune checkpoint inhibitor (ICI) targeting PD-1/PD-L1 signaling in combination with chemotherapy. Here, we discovered that therapeutic response to ICI plus paclitaxel was associated with subcellular redistribution of PD-L1. In our immunotherapy cohort of ICI in combination with nab-paclitaxel, tumor samples from responders showed significant distribution of PD-L1 at mitochondria, while non-responders showed increased accumulation of PD-L1 on tumor cell membrane instead of mitochondria. Our results also revealed that the distribution pattern of PD-L1 was regulated by an ATAD3A-PINK1 axis. Mechanistically, PINK1 recruited PD-L1 to mitochondria for degradation via a mitophagy pathway. Importantly, paclitaxel increased ATAD3A expression to disrupt proteostasis of PD-L1 by restraining PINK1-dependent mitophagy. Clinically, patients with tumors exhibiting high expression of ATAD3A detected before the treatment with ICI in combination with paclitaxel had markedly shorter progression-free survival compared with those with ATAD3A-low tumors. Preclinical results further demonstrated that targeting ATAD3A reset a favorable antitumor immune microenvironment and increased the efficacy of combination therapy of ICI plus paclitaxel. In summary, our results indicate that ATAD3A serves not only as a resistant factor for the combination therapy of ICI plus paclitaxel through preventing PD-L1 mitochondrial distribution, but also as a promising target for increasing the therapeutic responses to chemoimmunotherapy.


Asunto(s)
Antígeno B7-H1 , Mitofagia , Humanos , ATPasas Asociadas con Actividades Celulares Diversas , Inmunoterapia , Proteínas de la Membrana , Mitocondrias , Proteínas Mitocondriales , Paclitaxel/farmacología , Proteínas Quinasas
2.
Lab Invest ; 102(12): 1304-1313, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35882906

RESUMEN

Glioma progression is accompanied with increased tumor tissue stiffness, yet the underlying mechanisms are unclear. Herein, we employed atomic force microscopy analysis to show that tissue stiffness was higher in isocitrate dehydrogenase (IDH)-wild type gliomas than IDH-mutant gliomas. Bioinformatic analyses revealed that tissue inhibitor of metalloproteinase-1 (TIMP1) was one of the preferentially upregulated genes in IDH-wild type gliomas as compared to IDH-mutant gliomas, and its higher expression indicated worse prognosis of glioma patients. TIMP1 intensity determined by immunofluorescence staining on glioma tissues positively correlated with glioma tissue stiffness. Mechanistically, TIMP1 expression was positively correlated with the gene expression of two predominant extracellular matrix components, tenascin C and fibronectin, both of which were also highly expressed in IDH-wild type gliomas. By introducing IDH1-R132H-containing vectors into human IDH1-wild type glioma cells to obtain an IDH1-mutant cell line, we found that IDH1 mutation increased the TIMP1 promoter methylation through methylation-specific PCR. More importantly, IDH1-R132H mutation decreased both the expression of TIMP1, fibronectin, tenascin C, and the tumor tissue stiffness in IDH1-mutant glioma xenografts in contrast to IDH1-wild type counterparts. Moreover, TIMP1 knockdown in IDH-wild type glioma cells inhibited the expression of tenascin C and fibronectin, and decreased tissue stiffness in intracranial glioma xenografts. Conclusively, we revealed an IDH mutation status-mediated mechanism in regulating glioma tissue stiffness through modulating TIMP1 and downstream extracellular matrix components.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Fibronectinas/genética , Neoplasias Encefálicas/metabolismo , Tenascina/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Glioma/metabolismo , Mutación , Matriz Extracelular/metabolismo
3.
Clin Exp Metastasis ; 39(4): 691-710, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35661947

RESUMEN

Plexin-domain containing 2 (PLXDC2) has been reported as an oncoprotein in several human malignancies. However, its expression and roles in gastric cancer remain largely unclear. In this study, we found that PLXDC2 was highly expressed in gastric cancer tissues, and the expression levels were positively correlated with clinicopathological features, but negatively with the patients' outcome. Cox regression analysis identified PLXDC2 as an independent prognostic indicator for the patients. Knockdown of PLXDC2 markedly suppressed the in vitro invasion and in vivo metastasis of gastric cancer cells, while overexpression of PLXDC2 resulted in opposite effects. Mechanistically, PLXDC2 enhanced the level of phosphorylated Cortactin (p-Cortactin) by physically interacting with protein tyrosine phosphatase 1B (PTP1B), an important dephosphorylase, to prevent its dephosphorylating of p-Cortactin, thereby promoting the formation of invadopodia. Collectively, our results indicate that PLXDC2 contributes to the invasion and metastasis of gastric cancer by inhibiting PTP1B to facilitate the invadopodium formation, and may serve as a potential prognostic biomarker and a therapeutic target for this disease.


Asunto(s)
Podosomas , Neoplasias Gástricas , Línea Celular Tumoral , Cortactina/genética , Cortactina/metabolismo , Humanos , Invasividad Neoplásica , Monoéster Fosfórico Hidrolasas/metabolismo , Podosomas/metabolismo , Podosomas/patología , Receptores de Superficie Celular , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
4.
J Pathol ; 258(2): 121-135, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35723032

RESUMEN

Tumour-associated macrophages (TAMs) abundantly infiltrate high-grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)-differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte-derived TAM (Mo-TAM) and microglia-derived TAM (Mg-TAM) clusters across glioblastoma-IDH-wild type and astrocytoma-IDH-mutant-grade 4 (Astro-IDH-mut-G4). Single-cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro-IDH-mut-G4. Cell clustering, single-cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM-cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro-IDH-mut-G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg-TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg-TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset-specific markers identified spatial enrichment of distinct TAM clusters at peri-vascular/necrotic areas in tumour parenchyma or at the tumour-brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo-TAM-inflammatory clusters, whereas Astro-IDH-mut-G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH-differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Glioma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Macrófagos Asociados a Tumores
5.
Signal Transduct Target Ther ; 7(1): 33, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35105853

RESUMEN

Platelet-derived growth subunit A (PDGFA) plays critical roles in development of glioblastoma (GBM) with substantial evidence from TCGA database analyses and in vivo mouse models. So far, only platelet-derived growth receptor α (PDGFRA) has been identified as receptor for PDGFA. However, PDGFA and PDGFRA are categorized into different molecular subtypes of GBM in TCGA_GBM database. Our data herein further showed that activity or expression deficiency of PDGFRA did not effectively block PDGFA activity. Therefore, PDGFRA might be not necessary for PDGFA function.To profile proteins involved in PDGFA function, we performed co-immunoprecipitation (Co-IP) and Mass Spectrum (MS) and delineated the network of PDGFA-associated proteins for the first time. Unexpectedly, the data showed that EPHA2 could be temporally activated by PDGFA even without activation of PDGFRA and AKT. Furthermore, MS, Co-IP, in vitro binding thermodynamics, and proximity ligation assay consistently proved the interaction of EPHA2 and PDGFA. In addition, we observed that high expression of EPHA2 leaded to upregulation of PDGF signaling targets in TCGA_GBM database and clinical GBM samples. Co-upregulation of PDGFRA and EPHA2 leaded to worse patient prognosis and poorer therapeutic effects than other contexts, which might arise from expression elevation of genes related with malignant molecular subtypes and invasive growth. Due to PDGFA-induced EPHA2 activation, blocking PDGFRA by inhibitor could not effectively suppress proliferation of GBM cells, but simultaneous inhibition of both EPHA2 and PDGFRA showed synergetic inhibitory effects on GBM cells in vitro and in vivo. Taken together, our study provided new insights on PDGFA function and revealed EPHA2 as a potential receptor of PDGFA. EPHA2 might contribute to PDGFA signaling transduction in combination with PDGFRA and mediate the resistance of GBM cells to PDGFRA inhibitor. Therefore, combination of inhibitors targeting PDGFRA and EHA2 represented a promising therapeutic strategy for GBM treatment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor EphA2/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Proteínas de Neoplasias/genética , Factor de Crecimiento Derivado de Plaquetas/genética , Pronóstico , Receptor EphA2/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética
6.
Hum Pathol ; 97: 68-79, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31926212

RESUMEN

Immunotherapies targeting programmed cell death protein 1 (PD-1)/PD-1 ligand (PD-L1) axis have been emerging as a promising therapeutic strategy to treat lung cancer. PD-1 is preferentially expressed by activated T lymphocytes; but whether/how its expression by tumor-associated macrophages (TAMs) in lung adenocarcinoma remains elusive. Herein, we investigate the frequency of PD-1 expression on TAMs in mouse allografts by flow cytometry analysis and evaluate the spatial distribution and clinicopathological significance of PD-1+ TAMs in 213 cases of human lung adenocarcinoma specimens by immunohistochemical staining. We find the expression of PD-1 by both mouse and human TAMs. Mouse PD-1+ TAMs possess unique transcriptional profile as compared to PD-1- TAMs. Furthermore, PD-1 is preferentially expressed by CD163+ TAMs in the tumor stroma than those in the tumor islets of lung adenocarcinoma. Stromal PD-1+ TAM infiltration is an independent predictor of reduced survival as determined by univariate (P < .001) and multivariate (P = .023) analysis. Moreover, patients with high stromal PD-1+ TAMs but low tumor cell PD-L1 expression have the shortest survival (P = .0001). Our study demonstrates that PD-1+ TAMs have unique gene expression characteristics and PD-1+ TAMs in the tumor stroma is a potential prognostic factor in lung adenocarcinoma, suggesting that a better understanding of PD-1+ TAMs will be beneficial for immunotherapy of lung adenocarcinoma patients.


Asunto(s)
Adenocarcinoma del Pulmón/inmunología , Biomarcadores de Tumor/análisis , Carcinoma Pulmonar de Lewis/inmunología , Neoplasias Pulmonares/inmunología , Macrófagos/inmunología , Receptor de Muerte Celular Programada 1/análisis , Células del Estroma/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/patología , Animales , Biomarcadores de Tumor/genética , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Pronóstico , Receptor de Muerte Celular Programada 1/genética , Células del Estroma/patología
7.
Lab Invest ; 100(4): 619-629, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31748682

RESUMEN

Tumor-associated macrophages (TAMs) constitute a large population of glioblastoma and facilitate tumor growth and invasion of tumor cells, but the underlying mechanism remains undefined. In this study, we demonstrate that chemokine (C-C motif) ligand 8 (CCL8) is highly expressed by TAMs and contributes to pseudopodia formation by GBM cells. The presence of CCL8 in the glioma microenvironment promotes progression of tumor cells. Moreover, CCL8 induces invasion and stem-like traits of GBM cells, and CCR1 and CCR5 are the main receptors that mediate CCL8-induced biological behavior. Finally, CCL8 dramatically activates ERK1/2 phosphorylation in GBM cells, and blocking TAM-secreted CCL8 by neutralized antibody significantly decreases invasion of glioma cells. Taken together, our data reveal that CCL8 is a TAM-associated factor to mediate invasion and stemness of GBM, and targeting CCL8 may provide an insight strategy for GBM treatment.


Asunto(s)
Quimiocina CCL8/metabolismo , Glioblastoma/metabolismo , Macrófagos/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Invasividad Neoplásica/fisiopatología , Células Madre Neoplásicas/citología , Células Tumorales Cultivadas
8.
Clin Breast Cancer ; 19(5): 326-332.e1, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31176611

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy (NAC) is widely administered in the primary treatment of triple-negative breast cancer (TNBC). However, serum biomarkers for evaluating or monitoring the curative efficacy of NAC have not been established. Accumulating data have shown that soluble programmed death 1 (sPD-1) and its ligand (sPD-L1) might be potential biomarkers for evaluating the curative efficacy of chemotherapy and patient prognosis in several cancers but not yet in breast cancer. PATIENTS AND METHODS: Blood specimens were obtained from 66 TNBC patients who received NAC and 59 healthy women. The serum concentrations of sPD-1 and sPD-L1 were measured by enzyme-linked immunosorbent assay. RESULTS: Compared to healthy women, the serum concentration of sPD-1 was significantly elevated in TNBC patients before NAC (549.3 ± 58.76 pg/mL vs. 379.2 ± 17.30 pg/mL, P = .007), but there was only an increase tendency for sPD-L1 (227.7 ± 23.99 pg/mL vs. 195.0 ± 8.49 pg/mL, P = .22). The serum levels of sPD-1 and sPD-L1 before NAC in TNBC patients increased with tumor stage (P = .038 and .030, respectively). Patients who experienced complete or partial remission after NAC had significantly decreased serum levels of sPD-1 and sPD-L1 compared to patients with a poor response to NAC (P = .019 and .021, respectively). CONCLUSION: Serum levels of sPD-1 and sPD-L1 could be used as noninvasive biomarkers for evaluating the malignancy of TNBC before NAC and for predicting the NAC response in TNBC patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno B7-H1/sangre , Biomarcadores de Tumor/sangre , Terapia Neoadyuvante/métodos , Receptor de Muerte Celular Programada 1/sangre , Neoplasias de la Mama Triple Negativas/patología , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Metástasis Linfática , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Estudios Retrospectivos , Neoplasias de la Mama Triple Negativas/sangre , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA