Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
EClinicalMedicine ; 73: 102684, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007060

RESUMEN

Background: The FDA's alerts regarding the T-cell lymphoma risk post CAR-T therapy has garnered global attention, yet a comprehensive profile of second primary malignancies (SPMs) following CAR-T treatment is lacking. Methods: We extracted adverse event reports of hematological malignancies (HMs) patients with clearly definable SPMs from the FAERS and VigiBase databases (2017-2023). Disproportionality analysis using reporting odds ratio (ROR) and adjusted ROR was performed to assess associations between SPMs and CAR-T therapy. Time-to-onset analysis explored factors affecting SPM manifestation. Findings: SPMs post CAR T-cell therapy include HMs and solid tumors. T-cell lymphoma and myelodysplastic syndromes were consistently identified as positive signals across the overall and subgroup analyses. Hematological SPMs showed earlier onset with increasing annual incidence post CAR-T therapy, whereas solid tumors exhibit delayed manifestation. SPMs in CAR-T recipients had significantly earlier onset than non-recipients. Furthermore, age-specific characteristics reveal earlier SPM manifestations in pediatric, adolescent, and young adult populations compared to older populations post CAR-T therapy. Interpretation: The current SPM profile highlights the necessity of long-term safety monitoring for all CAR-T recipients given the observed yearly increase of SPMs. Customizing long-term SPM screening across different age groups may enhance early detection and intervention strategies, ultimately improving patient outcomes in the follow-up of CAR-T recipients. Funding: This work was supported by grants from the Natural Science Foundation of Guangdong Province (2018A030313846 and 2021A1515012593), the Science and Technology Planning Project of Guangdong Province (2019A030317020), the National Natural Science Foundation of China (81802257, 81871859, 81772457, 82172750, 82172811, and 82260546), the Guangdong Basic and Applied Basic Research Foundation (Guangdong-Guangzhou Joint Funds) (2022A1515111212), and the Science and Technology Program of Guangzhou (2023A04J1257).

2.
Cell Mol Biol Lett ; 29(1): 90, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877403

RESUMEN

The membrane-delimited receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), angiotensin-converting enzyme 2 (ACE2), which is expressed in the intestine, collaborates with broad neutral amino acid transporter 1 (B0AT1). Tryptophan (Trp) is transported into intestinal epithelial cells by ACE2 and B0AT1. However, whether ACE2 and its binding protein B0AT1 are involved in Trp-mediated alleviation of intestinal injury is largely unknown. Here, we used weaned piglets and IPEC-J2 cells as models and found that ACE2/B0AT1 alleviated lipopolysaccharide (LPS)-induced diarrhea and promoted intestinal barrier recovery via transport of Trp. The levels of the aryl hydrocarbon receptor (AhR) and mechanistic target of rapamycin (mTOR) pathways were altered by ACE2. Dietary Trp supplementation in LPS-treated weaned piglets revealed that Trp alleviated diarrhea by promoting ACE2/B0AT1 expression, and examination of intestinal morphology revealed that the damage to the intestinal barrier was repaired. Our study demonstrated that ACE2 accompanied by B0AT1 mediated the alleviation of diarrhea by Trp through intestinal barrier repair via the mTOR pathway.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Diarrea , Mucosa Intestinal , Lipopolisacáridos , Serina-Treonina Quinasas TOR , Triptófano , Animales , Triptófano/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Porcinos , Diarrea/metabolismo , Mucosa Intestinal/metabolismo , Transducción de Señal , Línea Celular , COVID-19/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , SARS-CoV-2
3.
PLoS Comput Biol ; 20(5): e1012024, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717988

RESUMEN

The activation levels of biologically significant gene sets are emerging tumor molecular markers and play an irreplaceable role in the tumor research field; however, web-based tools for prognostic analyses using it as a tumor molecular marker remain scarce. We developed a web-based tool PESSA for survival analysis using gene set activation levels. All data analyses were implemented via R. Activation levels of The Molecular Signatures Database (MSigDB) gene sets were assessed using the single sample gene set enrichment analysis (ssGSEA) method based on data from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), The European Genome-phenome Archive (EGA) and supplementary tables of articles. PESSA was used to perform median and optimal cut-off dichotomous grouping of ssGSEA scores for each dataset, relying on the survival and survminer packages for survival analysis and visualisation. PESSA is an open-access web tool for visualizing the results of tumor prognostic analyses using gene set activation levels. A total of 238 datasets from the GEO, TCGA, EGA, and supplementary tables of articles; covering 51 cancer types and 13 survival outcome types; and 13,434 tumor-related gene sets are obtained from MSigDB for pre-grouping. Users can obtain the results, including Kaplan-Meier analyses based on the median and optimal cut-off values and accompanying visualization plots and the Cox regression analyses of dichotomous and continuous variables, by selecting the gene set markers of interest. PESSA (https://smuonco.shinyapps.io/PESSA/ OR http://robinl-lab.com/PESSA) is a large-scale web-based tumor survival analysis tool covering a large amount of data that creatively uses predefined gene set activation levels as molecular markers of tumors.


Asunto(s)
Biomarcadores de Tumor , Biología Computacional , Bases de Datos Genéticas , Internet , Neoplasias , Programas Informáticos , Humanos , Neoplasias/genética , Neoplasias/mortalidad , Análisis de Supervivencia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional/métodos , Pronóstico , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética
4.
Membranes (Basel) ; 14(5)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38786951

RESUMEN

Membrane distillation (MD) is considered a promising technology for desalination. In the MD process, membrane pores are easily contaminated and wetted, which will degrade the permeate flux and salt rejection of the membrane. In this work, SiC ceramic membranes were used as the supports, and an Al2O3 micro-nano structure was constructed on its surface. The surface energy of Al2O3@SiC micro-nano composite membranes was reduced by organosilane grafting modification. The effective deposition of Al2O3 nanoflowers on the membrane surface increased membrane roughness and enhanced the anti-fouling and anti-wetting properties of the membranes. Simultaneously, the presence of nanoflowers also regulated the pore structures and thus decreased the membrane pore size. In addition, the effects of Al2(SO4)3 concentration and sintering temperature on the surface morphology and performance of the membranes were investigated in detail. It was demonstrated that the water contact angle of the resulting membrane was 152.4°, which was higher than that of the pristine membrane (138.8°). In the treatment of saline water containing 35 g/L of NaCl, the permeate flux was about 11.1 kg⋅m-2⋅h-1 and the salt rejection was above 99.9%. Note that the pristine ceramic membrane cannot be employed for MD due to its larger membrane pore size. This work provides a new method for preparing superhydrophobic ceramic membranes for MD.

5.
Structure ; 32(7): 918-929.e4, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38626767

RESUMEN

Nectin and nectin-like (Necl) co-receptor axis, comprised of receptors DNAM-1, TIGIT, CD96, PVRIG, and nectin/Necl ligands, is gaining prominence in immuno-oncology. Within this axis, the inhibitory receptor PVRIG recognizes Nectin-2 with high affinity, but the underlying molecular basis remains unknown. By determining the crystal structure of PVRIG in complex with Nectin-2, we identified a unique CC' loop in PVRIG, which complements the double-lock-and-key binding mode and contributes to its high affinity for Nectin-2. The association of the corresponding charged residues in the F-strands explains the ligand selectivity of PVRIG toward Nectin-2 but not for Necl-5. Moreover, comprehensive comparisons of the binding capacities between co-receptors and ligands provide innovative insights into the intra-axis immunoregulatory mechanism. Taken together, these findings broaden our understanding of immune recognition and regulation mediated by nectin/Necl co-receptors and provide a rationale for the development of immunotherapeutic strategies targeting the nectin/Necl axis.


Asunto(s)
Modelos Moleculares , Nectinas , Unión Proteica , Nectinas/metabolismo , Nectinas/química , Humanos , Cristalografía por Rayos X , Sitios de Unión , Ligandos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/química , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/inmunología
6.
Pharmacol Res ; 202: 107127, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438090

RESUMEN

Circular RNAs (circRNAs) represent a novel class of non-coding RNAs that play significant roles in tumorigenesis and tumor progression. High-throughput sequencing of gastric cancer (GC) tissues has identified circRNA BIRC6 (circBIRC6) as a potential circRNA derived from the BIRC6 gene, exhibiting significant upregulation in GC tissues. The expression of circBIRC6 is notably elevated in GC patients. Functionally, it acts as a molecular sponge for miR-488, consequently upregulating GRIN2D expression and promoting GC proliferation, migration, and invasion. Moreover, overexpression of circBIRC6 leads to increased GRIN2D expression, which in turn enhances caveolin-1 (CAV1) expression, resulting in autophagy deficiency due to miR-488 sequestration. This cascade of events significantly influences tumorigenesis in vivo. Our findings collectively illustrate that the CircBIRC6-miR-488-GRIN2D axis fosters CAV1 expression in GC cells, thereby reducing autophagy levels. Both circBIRC6 and GRIN2D emerge as potential targets for treatment and independent prognostic factors for GC patients.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , Autofagia , Caveolina 1/genética , Caveolina 1/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Gástricas/patología
7.
Adv Sci (Weinh) ; 11(18): e2307899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460164

RESUMEN

Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.


Asunto(s)
Ferroptosis , Estearoil-CoA Desaturasa , Neoplasias Gástricas , Peptidasa Específica de Ubiquitina 7 , Animales , Humanos , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética
8.
NPJ Biofilms Microbiomes ; 10(1): 25, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509085

RESUMEN

Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.


Asunto(s)
Hiperuricemia , Lacticaseibacillus rhamnosus , Humanos , Hiperuricemia/terapia , Nucleósidos , Lactobacillus , Prolina , Purinas
9.
Appl Radiat Isot ; 206: 111243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394811

RESUMEN

Carbon nanotube (CNT)-based field emission X-ray source with the advantage of fast start-up response offers the chance to achieve high-frequency X-ray emission. In this study, a high-frequency random pulse X-ray source of CNT cold cathode combined with a channel electron multiplier (CEM) was built, and its direct current (DC) and pulse emission characteristics were tested. The DC measurement results were used for parameter selection for performing pulse experiments. During the DC test, with the conditions of 2.2 kV CEM bias voltage and 25 kV anode voltage, the anode currents are 141, 250, and 300 µA at grid voltages of 290, 387.6, and 432.2 V, respectively; the corresponding grid field values are 1.45, 1.94, and 2.16 V/µm. During the pulse test, the amplitude-frequency response of the X-ray source reaches 3.58 MHz at 3 dB. The developed pulse X-ray source was introduced into the X-ray communication (XCOM), and the experimental communication rate reached 6 Mbps with the bit-error-rate of 1.1 × 10-3. The developed high-frequency pulse CNT-CEM X-ray source has potential applications in XCOM, high-speed X-ray imaging, and other fields.

10.
Cell Death Dis ; 15(1): 34, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212325

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is the second most common malignancy among primary liver cancers, with an increasing overall incidence and poor prognosis. The intertumoral and intratumoral heterogeneity of ICC makes it difficult to find efficient drug therapies. Therefore, it is essential to identify tumor suppressor genes and oncogenes that induce ICC formation and progression. Here, we performed CRISPR/Cas9-mediated genome-wide screening in a liver-specific Smad4/Pten knockout mouse model (Smad4co/co;Ptenco/co;Alb-Cre, abbreviated as SPC), which normally generates ICC after 6 months, and detected that mutations in Trp53, Fbxw7, Inppl1, Tgfbr2, or Cul3 markedly accelerated ICC formation. To illustrate the potential mechanisms, we conducted transcriptome sequencing and found that multiple receptor tyrosine kinases were activated, which mainly upregulated the PI3K pathway to induce cell proliferation. Remarkably, the Cul3 mutation stimulated cancer progression mainly by altering the immune microenvironment, whereas other mutations promoted the cell cycle. Moreover, Fbxw7, Inppl1, Tgfbr2, and Trp53 also affect inflammatory responses, apelin signaling, mitotic spindles, ribosome biogenesis, and nucleocytoplasmic transport pathways, respectively. We further examined FDA-approved drugs for the treatment of liver cancer and performed high-throughput drug screening of the gene-mutant organoids. Different drug responses and promising drug therapies, including chemotherapy and targeted drugs, have been discovered for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Ratones , Animales , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Mutación/genética , Transducción de Señal , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Microambiente Tumoral
12.
Nat Cell Biol ; 25(10): 1520-1534, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37723297

RESUMEN

Human spermatogenesis is a highly ordered process; however, the roles of DNA methylation and chromatin accessibility in this process remain largely unknown. Here by simultaneously investigating the chromatin accessibility, DNA methylome and transcriptome landscapes using the modified single-cell chromatin overall omic-scale landscape sequencing approach, we revealed that the transcriptional changes throughout human spermatogenesis were correlated with chromatin accessibility changes. In particular, we identified a set of transcription factors and cis elements with potential functions. A round of DNA demethylation was uncovered upon meiosis initiation in human spermatogenesis, which was associated with male meiotic recombination and conserved between human and mouse. Aberrant DNA hypermethylation could be detected in leptotene spermatocytes of certain nonobstructive azoospermia patients. Functionally, the intervention of DNA demethylation affected male meiotic recombination and fertility. Our work provides multi-omics landscapes of human spermatogenesis at single-cell resolution and offers insights into the association between DNA demethylation and male meiotic recombination.


Asunto(s)
Desmetilación del ADN , Multiómica , Humanos , Masculino , Animales , Ratones , Espermatogénesis/genética , Meiosis/genética , Cromatina/genética
13.
World J Stem Cells ; 15(6): 502-513, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37424950

RESUMEN

Mesenchymal stem cells (MSCs) can differentiate into various tissue cell types including bone, adipose, cartilage, and muscle. Among those, osteogenic differentiation of MSCs has been widely explored in many bone tissue engineering studies. Moreover, the conditions and methods of inducing osteogenic differentiation of MSCs are continuously advancing. Recently, with the gradual recognition of adipokines, the research on their involvement in different pathophysiological processes of the body is also deepening including lipid metabolism, inflammation, immune regulation, energy disorders, and bone homeostasis. At the same time, the role of adipokines in the osteogenic differentiation of MSCs has been gradually described more completely. Therefore, this paper reviewed the evidence of the role of adipokines in the osteogenic differentiation of MSCs, emphasizing bone formation and bone regeneration.

14.
Nat Commun ; 14(1): 2518, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130873

RESUMEN

Clinical updates suggest conserving metastatic sentinel lymph nodes (SLNs) of breast cancer (BC) patients during surgery; however, the immunoadjuvant potential of this strategy is unknown. Here we leverage an immune-fueling flex-patch to animate metastatic SLNs with personalized antitumor immunity. The flex-patch is implanted on the postoperative wound and spatiotemporally releases immunotherapeutic anti-PD-1 antibodies (aPD-1) and adjuvants (magnesium iron-layered double hydroxide, LDH) into the SLN. Genes associated with citric acid cycle and oxidative phosphorylation are enriched in activated CD8+ T cells (CTLs) from metastatic SLNs. Delivered aPD-1 and LDH confer CTLs with upregulated glycolytic activity, promoting CTL activation and cytotoxic killing via metal cation-mediated shaping. Ultimately, CTLs in patch-driven metastatic SLNs could long-termly maintain tumor antigen-specific memory, protecting against high-incidence BC recurrence in female mice. This study indicates a clinical value of metastatic SLN in immunoadjuvant therapy.


Asunto(s)
Ganglio Linfático Centinela , Femenino , Ratones , Animales , Ganglio Linfático Centinela/patología , Biopsia del Ganglio Linfático Centinela , Linfocitos T CD8-positivos , Linfocitos T Citotóxicos , Recurrencia Local de Neoplasia/patología , Adyuvantes Inmunológicos/uso terapéutico , Ganglios Linfáticos/patología
15.
J Cancer Res Clin Oncol ; 149(11): 9229-9241, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37199837

RESUMEN

PURPOSE: Breast cancer patients typically have decent prognoses, with a 5-year survival rate of more than 90%, but when the disease metastases to lymph node or distant, the prognosis drastically declines. Therefore, it is essential for future treatment and patient survival to quickly and accurately identify tumor metastasis in patients. An artificial intelligence system was developed to recognize lymph node and distant tumor metastases on whole-slide images (WSIs) of primary breast cancer. METHODS: In this study, a total of 832 WSIs from 520 patients without tumor metastases and 312 patients with breast cancer metastases (including lymph node, bone, lung, liver, and other) were gathered. Based on the WSIs were randomly divided into the training and testing cohorts, a brand-new artificial intelligence system called MEAI was built to identify lymph node and distant metastases in primary breast cancer. RESULTS: The final AI system attained an area under the receiver operating characteristic curve of 0.934 in a test set of 187 patients. In addition, the potential for AI system to increase the precision, consistency, and effectiveness of tumor metastasis detection in patients with breast cancer was highlighted by the AI's achievement of an AUROC higher than the average of six board-certified pathologists (AUROC 0.811) in a retrospective pathologist evaluation. CONCLUSION: The proposed MEAI system can provide a non-invasive approach to assess the metastatic probability of patients with primary breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Metástasis Linfática/patología , Neoplasias de la Mama/patología , Inteligencia Artificial , Estudios Retrospectivos , Ganglios Linfáticos/patología , Radiofármacos
16.
Int J Biol Sci ; 19(6): 1764-1777, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063417

RESUMEN

Sleeping Beauty (SB) insertional mutagenesis has been widely used for genome-wide functional screening in mouse models of human cancers, however, intertumor heterogeneity can be a major obstacle in identifying common insertion sites (CISs). Although previous algorithms have been successful in defining some CISs, they also miss CISs in certain situations. A major common characteristic of these previous methods is that they do not take tumor heterogeneity into account. However, intertumoral heterogeneity directly influences the sequence read number for different tumor samples and then affects CIS identification. To precisely detect and define cancer driver genes, we developed SB Digestor, a computational algorithm that overcomes biological heterogeneity to identify more potential driver genes. Specifically, we define the relationship between the sequenced read number and putative gene number to deduce the depth cutoff for each tumor, which can reduce tumor complexity and precisely reflect intertumoral heterogeneity. Using this new tool, we re-analyzed our previously published SB-based screening dataset and identified many additional potent drivers involved in Brca1-related tumorigenesis, including Arhgap42, Tcf12, and Fgfr2. SB Digestor not only greatly enhances our ability to identify and prioritize cancer drivers from SB tumors but also substantially deepens our understanding of the intrinsic genetic basis of cancer.


Asunto(s)
Elementos Transponibles de ADN , Neoplasias , Animales , Ratones , Humanos , Elementos Transponibles de ADN/genética , Neoplasias/genética , Neoplasias/patología , Mutagénesis Insercional/genética , Oncogenes , Modelos Animales de Enfermedad , Transposasas/genética
17.
Stem Cell Reports ; 18(4): 969-984, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37044069

RESUMEN

The spermatogonial stem cell (SSC) niche is critical for SSC maintenance and subsequent spermatogenesis. Numerous reproductive hazards impair the SSC niche, thereby resulting in aberrant SSC self-renewal and male infertility. However, promising agents targeting the impaired SSC niche to promote SSC self-renewal are still limited. Here, we screen out and assess the effects of Lovastatin on the self-renewal of mouse SSCs (mSSCs). Mechanistically, Lovastatin promotes the self-renewal of mSSCs and inhibits its inflammation and apoptosis through the regulation of isoprenoid intermediates. Remarkably, treatment by Lovastatin could promote the proliferation of undifferentiated spermatogonia in the male gonadotoxicity model generated by busulfan injection. Of note, we demonstrate that Lovastatin could enhance the proliferation of primate undifferentiated spermatogonia. Collectively, our findings uncover that lovastatin could promote the self-renewal of both murine and primate SSCs and have implications for the treatment of certain types of male infertility using small compounds.


Asunto(s)
Infertilidad Masculina , Lovastatina , Ratones , Animales , Masculino , Humanos , Lovastatina/farmacología , Lovastatina/metabolismo , Células Madre/metabolismo , Proliferación Celular , Espermatogonias/metabolismo , Espermatogénesis , Primates , Infertilidad Masculina/inducido químicamente , Infertilidad Masculina/metabolismo
18.
In Vitro Cell Dev Biol Anim ; 59(4): 241-255, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37099179

RESUMEN

Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5' end splice donor and 3' end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5'-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5'-GC) in the conserved sequence (5'-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.


Asunto(s)
Adenina , Edición Génica , Animales , Porcinos , Exones/genética , Mutación , Técnicas de Inactivación de Genes
19.
Sci Adv ; 9(3): eabq1395, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662868

RESUMEN

Breast cancer-associated gene 1 (Brca1) deficiency induces the onset of breast cancer formation, accompanied with extensive genetic alterations. Here, we used both the sleeping beauty transposon mutagenesis system and CRISPR-Cas9-mediated genome-wide screening in mice to identify potential genetic alterations that act synergistically with Brca1 deficiency to promote tumorignesis. Both approaches identified Cullin-5 as a tumor suppressor, whose mutation enabled Brca1-deficient cell survival and accelerated tumorigenesis by orchestrating tumor microenvironment. Cullin-5 suppresses cell growth through ubiquitylating and degrading adenosine 3',5'-monophosphate-responsive element binding protein 1 (CREB1), especially under protein damage condition. Meanwhile, Cullin-5 deficiency activated CREB1-CCL2 signaling and resulted in the accumulation of monocytes and polymorphonuclear myeloid-derived suppressor cells, reduction of T cells that benefit tumor progression in both Brca1-deficient cells and wild-type cells. Blocking CREB1 activity either through gene knockout or specific inhibitor treatment suppressed changes in the tumor microenvironment caused by Cullin-5 deficiency and blocked tumor progression.


Asunto(s)
Proteínas Cullin , Neoplasias Mamarias Animales , Animales , Ratones , Proteínas Cullin/genética , Genes Supresores de Tumor , Neoplasias Mamarias Animales/patología , Transducción de Señal , Microambiente Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
20.
Redox Biol ; 59: 102578, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566738

RESUMEN

Conventional techniques for in vitro cancer drug screening require labor-intensive formalin fixation, paraffin embedding, and dye staining of tumor tissues at fixed endpoints. This way of assessment discards the valuable pharmacodynamic information in live cells over time. Here, we found endogenous lipofuscin-like autofluorescence acutely accumulated in the cell death process. Its unique red autofluorescence could report the apoptosis without labeling and continuously monitor the treatment responses in 3D tumor-culture models. Lifetime imaging of lipofuscin-like red autofluorescence could further distinguish necrosis from apoptosis of cells. Moreover, this endogenous fluorescent marker could visualize the apoptosis in live zebrafish embryos during development. Overall, this study validates that lipofuscin-like autofluorophore is a generic cell death marker. Its characteristic autofluorescence could label-free predict the efficacy of anti-cancer drugs in organoids or animal models.


Asunto(s)
Lipofuscina , Neoplasias , Animales , Lipofuscina/metabolismo , Pez Cebra/metabolismo , Microscopía Fluorescente , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA