Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
ACS Omega ; 7(21): 17868-17880, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35664607

RESUMEN

Hydraulic fracturing and acid fracturing are very effective stimulation technologies and are widely used in unconventional reservoir development. Fracture height, as an essential parameter to describe the geometric size of a fracture, is not only the input parameter of two-dimensional fracturing models but also the output parameter of three-dimensional fracturing models. Accurate prediction of fracture height growth can effectively avoid some risks. For example, petroleum reservoirs produce a large amount of formation water because wrong fracture height prediction leads to the connection between the oil or gas reservoir and the water layer. Although some fracture height prediction models were developed, few models considered the effects of the plastic zone, induced stress, and heterogeneous multilayer formation and its interaction. Therefore, considering the influence of many factors, an improved fracture-equilibrium-height model was developed in this study. The successive over-relaxation iteration method and the displacement discontinuity method were used to solve the model. We investigated the effects of the geological and engineering factors on fracture height growth by using the model, and some important conclusions were obtained. The higher the fracture height, the larger the plastic zone size, and the more obvious its influence on fracture height propagation. High overlying or underlying in situ stress and fracture toughness and low fluid density played a positive role in limiting the growth of the fracture height. Induced stress caused by fracture 1 could not only inhibit the height growth of fracture 2 but also promote its growth. The model established in this paper could be coupled to a fracturing simulator to provide a more reliable fracture height prediction.

2.
ACS Omega ; 6(10): 6559-6570, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33748568

RESUMEN

The conductivity of an acid-etched fracture is a necessary indicator for the stimulation of dolomite formation, which affects commercial development. The widely accepted test method involves the use of a small-scale conductivity cell for etching and measuring conductivity. However, the field production reflects that the actual conductivity does not match the measured one and is usually lower. Consequently, the existing studies had limitations and hence the stimulation mechanism needed to be explored further. To understand it more realistically, a novel large-scale apparatus was used in this study to test the conductivity of the acid-etched fracture. The use of this apparatus avoided the near-core excessive eroding and weak heterogeneity with continuous etching in a 1000 mm fracture. The results showed that the conductivity was indeed dissimilar to that in small-scale tests. The morphology of etched large-scale cores featured diversity and complexity, including deep and punctate channels, nonuniform pitting grooves with connected channels, and scale-shaped wavy grooves, which exactly demonstrated the multiple morphology under the influence of carbonate heterogeneity in real reservoirs. Moreover, the effect of increasing injection rate led to the unique etching morphology of scale-shaped wavy and pelviform grooves because of scouring flow and turbulence effects. The degree of surface roughness promoted nonuniform etching along the longitudinal and propagation direction, thus enhancing the conductivity of the whole fracture and confirming that the field treatment limited the pressure rather than the injection rate. The conductivity under different acid type, acid concentration, reaction temperature, and injection rate conditions was lower than that reported, confirming the experimental deviation in small-scale conductivity. The proposed large-scale apparatus test represented the acid-etched fracture conductivity more realistically, thus proving beneficial for the development of carbonate reservoirs.

3.
RSC Adv ; 11(52): 33083-33092, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35493584

RESUMEN

A self-suspending ultra-low density proppant (UDP) was developed based on the polymerization of the unsaturated carbon double bond. Its performance was characterized by FT-IR and SEM, and the sphericity and roundness, diameter distribution, density, mechanical properties, the conductivity of the propped fracture, and mass loss of different fluids were measured. The test results indicated that the UDP no longer contained the unsaturated carbon double bond and the polymerization took place in the raw material. The fracture surface of UDP is compact and it is not easy to produce debris after compression failure. The sphericity and roundness of UDP were above 0.9, and the high sphericity and roundness provided high conductivity. The stirring speed has a great influence on the diameter of UDP, and the UDP with different sizes could be used to prop the hydraulic fracture to different widths. The average apparent density of UDP is as low as 1.044 g cm-3, and it can be suspended in the fracturing fluid for a long time. The strain in the UDP is higher than that in the ceramsite and quartz sand, but its crushing ratio is far below theirs; therefore, the conductivity of the fracture propped by UDP was higher than that of quartz sand and ceramsite. The solubility of UDP in kerosene, reservoir water, and hydrochloric acid is below 1%, indicating that the UDP is also suitable for acid fracturing with proppant. All the experimental results proved that the self-suspending ultra-low density proppant has great potential use in hydraulic fracturing and acid fracturing.

4.
J Environ Sci (China) ; 56: 102-113, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28571844

RESUMEN

Air pollution is severe in China, and pollutants such as PM2.5 and surface O3 may cause major damage to human health and crops, respectively. Few studies have considered the health effects of PM2.5 or the loss of crop yields due to surface O3 using model-simulated air pollution data in China. We used gridded outputs from the WRF-Chem model, high resolution population data, and crop yield data to evaluate the effects on human health and crop yield in mainland China. Our results showed that outdoor PM2.5 pollution was responsible for 1.70-1.99 million cases of all-cause mortality in 2006. The economic costs of these health effects were estimated to be 151.1-176.9 billion USD, of which 90% were attributed to mortality. The estimated crop yield losses for wheat, rice, maize, and soybean were approximately 9, 4.6, 0.44, and 0.34 million tons, respectively, resulting in economic losses of 3.4 billion USD. The total economic losses due to ambient air pollution were estimated to be 154.5-180.3 billion USD, accounting for approximately 5.7%-6.6% of the total GDP of China in 2006. Our results show that both population health and staple crop yields in China have been significantly affected by exposure to air pollution. Measures should be taken to reduce emissions, improve air quality, and mitigate the economic loss.


Asunto(s)
Agricultura/estadística & datos numéricos , Contaminación del Aire/estadística & datos numéricos , Productos Agrícolas/provisión & distribución , Estado de Salud , Contaminantes Atmosféricos , China/epidemiología , Monitoreo del Ambiente/métodos , Humanos , Modelos Teóricos
5.
J Hazard Mater ; 154(1-3): 459-68, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18061343

RESUMEN

In China, daily respirable suspended particulate (RSP, particles with aerodynamic diameters less than 10 microm) concentrations exceeding 420 microg m(-3) are considered "hazardous" to health. These can lead to the premature onset of certain diseases and premature death of sick and elderly people; even healthy people are warned to avoid outdoor activity when RSP concentrations are high. Such high pollution levels are defined as extreme RSP pollution events. Recent epidemiological studies have shown that a distinct difference exists between the health effects caused by natural sources and anthropogenic sources, mandating knowledge of the source of extreme RSP pollution. Twenty-six extreme RSP pollution events were recorded in Beijing from January 2003 to December 2006. The HYSPLIT4 (Hybrid Single Particle Lagrangian Integrated Trajectory) model (Version 4) was used to discriminate the sources of these extreme RSP pollution events. The model found that twelve events were caused from natural sources (dust storms), nine events from anthropogenic sources (e.g., vehicles and industrial activities, etc.) under quasi-quiescent weather, and five events were from mixed causes. Identifying such events will be valuable in epidemiological studies on air pollution in Beijing.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , China , Monitoreo del Ambiente , Modelos Teóricos , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA