Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-31, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37937848

RESUMEN

Total or partial replacement of traditional durum wheat semolina (DWS) by alternative flours, such as legumes or wholegrain cereals in pasta improves their nutritional quality and can make them interesting vector for fortification. Climate-smart gluten-free (C-GF) flours, such as legumes (bambara groundnut, chickpea, cowpea, faba bean, and pigeon pea), some cereals (amaranth, teff, millet, and sorghum), and tubers (cassava and orange fleshed sweet potato), are of high interest to face ecological transition and develop sustainable food systems. In this review, an overview and a critical analysis of their nutritional potential for pasta production and processing conditions are undertaken. Special emphasis is given to understanding the influence of formulation and processing on techno-functional and nutritional (starch and protein digestibility) properties. Globally C-GF flours improve pasta protein quantity and quality, fibers, and micronutrients contents while keeping a low glycemic index and increasing protein digestibility. However, their use introduces anti-nutritional factors and could lead to the alteration of their techno-functional properties (higher cooking losses, lower firmness, and variability in color in comparison to classical DWS pasta). Nevertheless, these alternative pasta remain more interesting in terms of nutritional and techno-functional quality than traditional maize and rice-based gluten free pasta.

2.
J Dairy Sci ; 102(2): 1066-1082, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30471905

RESUMEN

Food formulation and process conditions can indirectly influence AA digestibility and bioavailability. Here we investigated the effects of formulation and process conditions used in the manufacture of novel blended dairy gels (called "mixed gels" here) containing fava bean (Vicia faba) globular proteins on both protein composition and metabolism when given to young rats. Three mixed dairy gels containing casein micelles and fava bean proteins were produced either by chemical acidification (A) with glucono-δ-lactone (GDL) or by lactic acid fermentation. Fermented gels containing casein and fava bean proteins were produced without (F) or with (FW) whey proteins. The AA composition of mixed gels was evaluated. The electrophoretic patterns of mixed protein gels analyzed by densitometry evidenced heat denaturation and aggregation via disulfide bonds of fava bean 11S legumin that could aggregate upon heating of the mixtures before gelation. Moreover, fermented gels showed no particular protein proteolysis compared with gel obtained by GDL-induced acidification. Kinetics of acidification were also evaluated. The pH decreased rapidly during gelation of GDL-induced acid gel compared with fermented gel. Freeze-dried F, A, and FW mixed gels were then fed to 30 young (1 mo old) male Wistar rats for 21 d (n = 10/diet). Fermented mixed gels significantly increased protein efficiency ratio (+58%) and lean mass (+26%), particularly muscle mass (+9%), and muscle protein content (+15%) compared with GDL-induced acid gel. Furthermore, F and FW formulas led to significantly higher apparent digestibility and true digestibility (+7%) than A formula. Blending fava bean, casein, and whey proteins in the fermented gel FW resulted in 10% higher leucine content and significantly higher protein retention in young rats (+7% and +28%) than the F and A mixed gels, respectively. Based on protein gain in young rats, the fermented fava bean, casein, and whey mixed proteins gel was the most promising candidate for further development of mixed protein gels with enhanced nutritional benefits.


Asunto(s)
Productos Lácteos/análisis , Proteínas en la Dieta/metabolismo , Manipulación de Alimentos/métodos , Proteínas de la Leche/análisis , Proteínas de Plantas/análisis , Vicia faba , Aminoácidos/metabolismo , Animales , Disponibilidad Biológica , Caseínas/análisis , Digestión , Fermentación , Geles/química , Concentración de Iones de Hidrógeno , Masculino , Valor Nutritivo , Ratas , Ratas Wistar , Proteína de Suero de Leche/análisis
3.
Int J Biol Macromol ; 126: 952-959, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30584929

RESUMEN

Arabinoxylans (AX) microspheres with different insulin/AX mass ratio were prepared by formation of phenoxy radical issued from the ferulic acid by enzymatic oxidation (entrapped in situ of insulin). Phenolic acid content and FT-IR spectrum of unloaded and insulin-loaded AX microspheres revealed that the phenoxy radical issued from the ferulic acid by enzymatic oxidation did not interact covalently with insulin. The microspheres showed a spherical shape, smooth surface and an average diameter of particles of 320 µm. In vitro control release found that AX microspheres minimized the insulin loss in the upper GI tract, retaining high percentage (~75%) of insulin in its matrix. The stability of the secondary structure of insulin was studied by dichroism circular (CD). The CD spectra of insulin released from AX microspheres did not change according to the insulin/AX mass ratio of the microsphere. Significant hypoglycemic effects with improved insulin-relative bioavailability tested on an in vivo murine model revealed the efficacy of these enzymatically cross-linked arabinoxylans microspheres as a new oral insulin carrier.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Sistemas de Liberación de Medicamentos , Insulina/administración & dosificación , Lacasa/metabolismo , Microesferas , Xilanos/química , Administración Oral , Animales , Glucemia/metabolismo , Liberación de Fármacos , Humanos , Masculino , Ratas Wistar , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Distribución Tisular
4.
Food Res Int ; 108: 203-215, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29735050

RESUMEN

Dehulled yellow pea flour (48.2% starch, 23.4% proteins, d.b.), was processed by a twin-screw extruder at various moisture contents MC (18-35% w.b.), product temperature T (115-165 °C), and specific mechanical energy SME (50-1200 kJ/kg). Structural changes of extruded pea flour were determined at different scales by measurements of density (expansion), crystallinity (X-ray diffraction), gelatinisation enthalpy (DSC), starch solubility in water and protein solubility in SDS and DTE (SE-HPLC). Foam density dropped from 820 to 85 kg/m3 with increase in SME and T (R2 ≥ 0.78). DSC and XRD results showed that starch was amorphous whatever extrusion conditions. Its solubility in water augmented up to 50%. Increasing temperature from 115 to 165 °C decreased proteins soluble in SDS from 95 to 35% (R2 = 0.83) of total proteins, whereas the proteins soluble in DTE increased from 5 to 45% (R2 = 0.75) of total proteins. These trends could be described by sigmoid models, which allowed determining onset temperatures for changes of protein solubility in the interval [125, 146 °C], whatever moisture content. The SME impact on protein solubility followed similar trends. These results suggest the creation of protein network by SS bonds, implicating larger SDS-insoluble protein aggregates, as a result of increasing T and SME, accompanied by creation of covalent bonds other than SS ones. CSLM images suggested that extruded pea flour had a composite morphology that changed from dispersed small protein aggregates to a bi-continuous matrix of large protein aggregates and amorphous starch. This morphology would govern the expansion of pea flour by extrusion.


Asunto(s)
Análisis de los Alimentos/métodos , Manipulación de Alimentos/métodos , Pisum sativum/química , Proteínas de Vegetales Comestibles/química , Semillas/química , Almidón/química , Conformación de Carbohidratos , Color , Cristalización , Agregado de Proteínas , Conformación Proteica , Solubilidad , Relación Estructura-Actividad , Temperatura , Agua/química
5.
J Agric Food Chem ; 48(7): 2948-53, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10898649

RESUMEN

Chemical (vapors of formaldehyde), physical (temperature, UV and gamma radiation), and aging treatments were applied to wheat gluten films. Changes in film mechanical properties, water vapor permeability, solubility, and color coordinates were investigated. An aging of 360 h led to a 75 and 314% increase in tensile strength and Young's modulus, respectively, and a 36% decrease in elongation. Severe thermal (above 110 degrees C, 15 min) and formaldehyde treatments highly improved the mechanical resistance of the films. Under these conditions, up to 376 and 654% increase in tensile strength and Young's modulus and up to 66% decrease in elongation have been observed. Water solubility was only slightly modified, whereas water vapor permeability was not affected. Color coordinates of films heated above 95 degrees C changed to a great extent. An almost total insolubilization of proteins in sodium dodecyl sulfate occurred for heat- and formaldehyde-treated films, due to the modification of protein network leading to changes in properties of the films.


Asunto(s)
Glútenes/análisis , Triticum , Fenómenos Químicos , Química Física , Solubilidad , Temperatura , Rayos Ultravioleta
6.
Int J Biol Macromol ; 27(3): 229-36, 2000 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-10828369

RESUMEN

The glass transition temperature (T(g)) of hydrophobized and native wheat gluten and its protein fractions, with water mass fraction from 0 to 0.2, was studied using modulated differential scanning calorimetry. The T(g) values of unplasticized products were approximately 175 degrees C whatever the treatment (hydrophobization) or the fraction tested, except for the gliadin-rich fraction (162 degrees C). Experimental change in heat capacity at the glass transition (DeltaC(p)) ranged from 0.32 to 0. 50 J/g/ degrees C depending on the gluten fractions. The Gordon-Taylor fit of T(g) evolution as a function of water content showed that glutenin-rich fractions were more sensitive to water plasticization than the gliadin-rich fraction. The Kwei equation gave better fit to experimental data and demonstrated that the water plasticization of gluten and its fractions is influenced by secondary interactions. However, the application of the Couchman-Karasz equation without fitting predicts satisfactorily the plasticization of gluten proteins by water.


Asunto(s)
Gliadina/química , Glútenes/análogos & derivados , Glútenes/química , Triticum/química , Rastreo Diferencial de Calorimetría , Cromatografía en Gel , Vidrio/química , Temperatura , Termodinámica , Agua/química
7.
J Agric Food Chem ; 48(2): 186-92, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10691614

RESUMEN

Gluten films were prepared by casting an acidic and ethanolic solution of gluten previously treated with sodium sulfite. The effects of sulfitolysis on proteins were investigated by SE-HPLC and thiol/disulfide content measurements. During sulfitolysis, insoluble glutenin macropolymer was converted into its constitutive subunits. About 10% of gluten disulfide bonds were cleaved, of which three-fourths originated from interchain disulfide bonds. Oxidation of thiol groups released during sulfitolysis was followed for various temperatures (T) and relative humidities. Oxidation was shown to be a second-order rate process occurring below the glass transition temperature (T(g)) and related to T - T(g). Thiol oxidation ensured the formation of interchain bonds between specific classes of gluten proteins according to an ordered process. Intrachain bonds were also formed and through thiol/disulfide-exchange reactions were finally converted to interchain bonds. Thus, fully oxidized gluten films had more insoluble glutenin macropolymers than native gluten.


Asunto(s)
Glútenes/química , Proteínas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Sulfitos/farmacología , Cromatografía Líquida de Alta Presión , Humedad , Oxidación-Reducción , Solubilidad , Temperatura , Factores de Tiempo , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA