Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 10(1): 582, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953510

RESUMEN

Reconstructing diet is critical to understanding hominin adaptations. Isotopic and functional morphological analyses of early hominins are compatible with consumption of hard foods, such as mechanically-protected seeds, but dental microwear analyses are not. The protective shells surrounding seeds are thought to induce complex enamel surface textures characterized by heavy pitting, but these are absent on the teeth of most early hominins. Here we report nanowear experiments showing that the hardest woody shells - the hardest tissues made by dicotyledonous plants - cause very minor damage to enamel but are themselves heavily abraded (worn) in the process. Thus, hard plant tissues do not regularly create pits on enamel surfaces despite high forces clearly being associated with their oral processing. We conclude that hard plant tissues barely influence microwear textures and the exploitation of seeds from graminoid plants such as grasses and sedges could have formed a critical element in the dietary ecology of hominins.


Asunto(s)
Dieta/historia , Hominidae/fisiología , Plantas/química , Diente/química , Animales , Evolución Biológica , Fósiles , Historia Antigua , Semillas/química , Microtomografía por Rayos X
3.
R Soc Open Sci ; 5(5): 171699, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29892367

RESUMEN

Mammalian tooth wear research reveals contrasting patterns seemingly linked to diet: irregularly pitted enamel surfaces, possibly from consuming hard seeds, versus roughly aligned linearly grooved surfaces, associated with eating tough leaves. These patterns are important for assigning diet to fossils, including hominins. However, experiments establishing conditions necessary for such damage challenge this paradigm. Lucas et al. (Lucas et al. 2013 J. R. Soc. Interface10, 20120923. (doi:10.1098/rsif.2012.0923)) slid natural objects against enamel, concluding anything less hard than enamel would rub, not abrade, its surface (producing no immediate wear). This category includes all organic plant matter. Particles harder than enamel, with sufficiently angular surfaces, could abrade it immediately, prerequisites that silica/silicate particles alone possess. Xia et al. (Xia, Zheng, Huang, Tian, Chen, Zhou, Ungar, Qian. 2015 Proc. Natl Acad. Sci. USA112, 10 669-10 672. (doi:10.1073/pnas.1509491112)) countered with experiments using brass and aluminium balls. Their bulk hardness was lower than enamel, but the latter was abraded. We examined the ball exteriors to address this discrepancy. The aluminium was surfaced by a thin rough oxide layer harder than enamel. Brass surfaces were smoother, but work hardening during manufacture gave them comparable or higher hardness than enamel. We conclude that Xia et al.'s results are actually predicted by the mechanical model of Lucas et al. To explain wear patterns, we present a new model of textural formation, based on particle properties and presence/absence of silica(tes).

4.
J Endod ; 44(2): 304-311, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29275853

RESUMEN

INTRODUCTION: Spontaneously catastrophic fracture of intact unrestored molar teeth is not common. Nevertheless, cracks do occur that progress apically, resulting in the complete splitting of the tooth and root. This report describes a catastrophic fracture that occurred in an unrestored mandibular second molar resulting in a previously unreported combination of a longitudinal and horizontal root fracture, appearing radiographically as a single horizontal root fracture. METHODS: Tooth fragments were examined clinically, stereoscopically, and by scanning electron microscopy. Fractographic analysis was used to investigate the dynamics involved in fracture initiation, structural resistances encountered during progression of the fracture, and reasons for direction changes culminating in the unusual radiographic appearance. RESULT: The uniqueness of this report is that it describes fractographic evidence of factors contributing to the initiation and progression of an in vivo crack. It shows fracture markings that are evidence of the energy dissipation mechanisms. The topographic location of these markings confirmed that cracks occur in vivo in stages with different rates of progression. CONCLUSION: This analysis helps to explain why split teeth are uncommon and highlights some of the multitude of factors that have to coincide for a tooth to catastrophically fracture. The report describes the mechanism of fracture and should stimulate clinicians and researchers to investigate cracking of teeth by undertaking fractographic analysis of extracted cracked teeth.


Asunto(s)
Diente Molar/lesiones , Fracturas de los Dientes/diagnóstico , Raíz del Diente/lesiones , Tomografía Computarizada de Haz Cónico , Femenino , Humanos , Mandíbula , Persona de Mediana Edad , Diente Molar/diagnóstico por imagen , Radiografía Dental , Fracturas de los Dientes/diagnóstico por imagen , Raíz del Diente/diagnóstico por imagen
6.
Interface Focus ; 6(3): 20160008, 2016 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-27274807

RESUMEN

A mammalian tooth is abraded when a sliding contact between a particle and the tooth surface leads to an immediate loss of tooth tissue. Over time, these contacts can lead to wear serious enough to impair the oral processing of food. Both anatomical and physiological mechanisms have evolved in mammals to try to prevent wear, indicating its evolutionary importance, but it is still an established survival threat. Here we consider that many wear marks result from a cutting action whereby the contacting tip(s) of such wear particles acts akin to a tool tip. Recent theoretical developments show that it is possible to estimate the toughness of abraded materials via cutting tests. Here, we report experiments intended to establish the wear resistance of enamel in terms of its toughness and how friction varies. Imaging via atomic force microscopy (AFM) was used to assess the damage involved. Damage ranged from pure plastic deformation to fracture with and without lateral microcracks. Grooves cut with a Berkovich diamond were the most consistent, suggesting that the toughness of enamel in cutting is 244 J m(-2), which is very high. Friction was higher in the presence of a polyphenolic compound, indicating that this could increase wear potential.

7.
Anat Rec (Hoboken) ; 298(1): 145-67, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25529240

RESUMEN

The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus.


Asunto(s)
Arco Dental/anatomía & histología , Arco Dental/fisiología , Dieta , Hominidae/anatomía & histología , Hominidae/fisiología , Cráneo/anatomía & histología , Cráneo/fisiología , Adaptación Fisiológica/fisiología , Animales , Evolución Biológica , Fenómenos Biomecánicos/fisiología , Fuerza de la Mordida , Ingestión de Alimentos/fisiología , Ecología , Análisis de Elementos Finitos , Imagenología Tridimensional , Matemática , Modelos Biológicos
8.
J R Soc Interface ; 10(80): 20120923, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23303220

RESUMEN

The wear of teeth is a major factor limiting mammalian lifespans in the wild. One method of describing worn surfaces, dental microwear texture analysis, has proved powerful for reconstructing the diets of extinct vertebrates, but has yielded unexpected results in early hominins. In particular, although australopiths exhibit derived craniodental features interpreted as adaptations for eating hard foods, most do not exhibit microwear signals indicative of this diet. However, no experiments have yet demonstrated the fundamental mechanisms and causes of this wear. Here, we report nanowear experiments where individual dust particles, phytoliths and enamel chips were slid across a flat enamel surface. Microwear features produced were influenced strongly by interacting mechanical properties and particle geometry. Quartz dust was a rigid abrasive, capable of fracturing and removing enamel pieces. By contrast, phytoliths and enamel chips deformed during sliding, forming U-shaped grooves or flat troughs in enamel, without tissue loss. Other plant tissues seem too soft to mark enamel, acting as particle transporters. We conclude that dust has overwhelming importance as a wear agent and that dietary signals preserved in dental microwear are indirect. Nanowear studies should resolve controversies over adaptive trends in mammals like enamel thickening or hypsodonty that delay functional dental loss.


Asunto(s)
Esmalte Dental/fisiología , Esmalte Dental/fisiopatología , Conducta Alimentaria , Modelos Biológicos , Diente Molar/fisiopatología , Pongo pygmaeus , Desgaste de los Dientes/fisiopatología , Animales , Esmalte Dental/patología , Diente Molar/patología , Desgaste de los Dientes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA