Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Mater Chem B ; 11(42): 10174-10188, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850271

RESUMEN

The intricate process of biomineralization, e.g. in sea urchins, involves the precise interplay of highly regulated mineralization proteins and the spatiotemporal coordination achieved through compartmentalization. However, the investigation of biomineralization effector molecules, e.g. proteins, is challenging, due to their very low abundance. Therefore, we investigate the functional mimicry in the bioinspired precipitation of calcium carbonate (CaCO3) with artificial peptides selected from a peptide library by phage display based on peptide-binding to calcite and aragonite, respectively. The structure-directing effects of the identified peptides were compared to those of natural protein mixes isolated from skeletal (test) structures of two sea urchin species (Arbacia lixula and Paracentrotus lividus). The calcium carbonate samples deposited in the absence or presence of peptides were analyzed with a set of complementary techniques with regard to morphology, polymorph, and nanostructural motifs. Remarkably, some of the CaCO3-binding peptides induced morphological features in calcite that appeared similar to those obtained in the presence of the natural protein mixes. Many of the peptides identified as most effective in exerting a structure-directing effect on calcium carbonate crystallization were rich in basic amino acid residues. Hence, our in vitro mineralization study further highlights the important, but often neglected, role of positively charged soluble organic matrices associated with biological and bioinspired CaCO3 deposition.


Asunto(s)
Bacteriófagos , Biomineralización , Animales , Carbonato de Calcio/química , Péptidos/química , Erizos de Mar/metabolismo , Bacteriófagos/metabolismo
2.
Int J Med Robot ; : e2570, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690099

RESUMEN

OBJECTIVE: This study evaluates the precision of a commercially available spine planning software in automatic spine labelling and screw-trajectory proposal. METHODS: The software uses automatic segmentation and registration of the vertebra to generate screw proposals. 877 trajectories were compared. Four neurosurgeons assessed suggested trajectories, performed corrections, and manually planned pedicle screws. Additionally, automatic identification/labelling was evaluated. RESULTS: Automatic labelling was correct in 89% of the cases. 92.9% of automatically planned trajectories were in accordance with G&R grade A + B. Automatic mode reduced the time spent planning screw trajectories by 7 s per screw to 20 s per vertebra. Manual mode yielded differences in screw-length between surgeons (largest distribution peak: 5 mm), automatic in contrast at 0 mm. The size of suggested pedicle screws was significantly smaller (largest peaks in difference between 0.5 and 3 mm) than the surgeon's choice. CONCLUSION: Automatic identification of vertebrae works in most cases and suggested pedicle screw trajectories are acceptable. So far, it does not substitute for an experienced surgeon's assessment.

3.
Chem Sci ; 14(32): 8483-8496, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37592980

RESUMEN

The most advanced structure prediction methods are powerless in exploring the conformational ensemble of disordered peptides and proteins and for this reason the "protein folding problem" remains unsolved. We present a novel methodology that enables the accurate prediction of spectroscopic fingerprints (circular dichroism, infrared, Raman, and Raman optical activity), and by this allows for "tidying up" the conformational ensembles of disordered peptides and disordered regions in proteins. This concept is elaborated for and applied to a dodecapeptide, whose spectroscopic fingerprint is measured and theoretically predicted by means of enhanced-sampling molecular dynamics coupled with quantum mechanical calculations. Following this approach, we demonstrate that peptides lacking a clear propensity for ordered secondary-structure motifs are not randomly, but only conditionally disordered. This means that their conformational landscape, or phase-space, can be well represented by a basis-set of conformers including about 10 to 100 structures. The implications of this finding have profound consequences both for the interpretation of experimental electronic and vibrational spectral features of peptides in solution and for the theoretical prediction of these features using accurate and computationally expensive techniques. The here-derived methods and conclusions are expected to fundamentally impact the rationalization of so-far elusive structure-spectra relationships for disordered peptides and proteins, towards improved and versatile structure prediction methods.

4.
J Colloid Interface Sci ; 628(Pt A): 72-81, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35908433

RESUMEN

We present combined experimental and modelling evidence that ß-lactoglobulin proteins employed as stabilizers of oil/water emulsions undergo minor but significant conformational changes during premix membrane emulsification processes. Circular Dichroism spectroscopy and Molecular Dynamics simulations reveal that the native protein structure is preserved as a metastable state after adsorption at stress-free oil/water interfaces. However, the shear stress applied to the oil droplets during their fragmentation in narrow membrane pores causes a transition into a more stable, partially unfolded interfacial state. The protein's ß-sheet content is reduced by up to 8% in a way that is largely independent of the pressure applied during emulsification, and is driven by an increase of contacts between the oil and hydrophobic residues at the expense of structural order within the protein core.


Asunto(s)
Lactoglobulinas , Simulación de Dinámica Molecular , Adsorción , Emulsiones/química , Interacciones Hidrofóbicas e Hidrofílicas , Lactoglobulinas/química
5.
J Chem Theory Comput ; 17(7): 4420-4434, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34191508

RESUMEN

We undertake steps to overcome four challenges that have hindered the understanding of ZnO/biomolecule interfaces at the atomic scale: parametrization of a classical force field, ZnO surface termination and amino acid protonation state in methanol, and convergence of enhanced sampling molecular dynamics simulations. We predict adsorption free energies for histidine, serine, cysteine, and tryptophan in remarkable agreement with experimental measurements obtained via a novel indicator-displacement assay. Adsorption is driven by direct surface/amino-acid interactions mediated by terminal hydroxyl groups and stabilized by strongly structured methanol solvation shells.

6.
Langmuir ; 35(44): 14230-14237, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31609123

RESUMEN

This paper describes novel adaptations of optically sectioned planar format assays to screen compounds for their affinities to materials surfaces. The novel platform, which we name optically sectioned indicator displacement assays (O-IDA), makes use of displaceable dyes in a format adaptable to high-throughput multiwell plate technologies. We describe two approaches: the first being where the dye exhibits fluorescence in both the surface bound and unbound state and the second, where fluorescence is lost upon displacement of the dye from the surface. Half maximal inhibitory concentration (IC50), binding affinity (Ki), and binding free energy (ΔGads) values can be extracted from the raw data. Representative biomolecules were tested for interactions with silica in an aqueous environment and ZnO(0001)-Zn and (10-10) facets in a nonaqueous environment. We provide the first experimental values for both the binding of small molecules to silica and the facet-dependent ZnO binding affinity of key amino acids associated with ZnO-specific oligopeptides. The specific data will be invaluable to those studying interactions at interfaces both experimentally and computationally. O-IDA provides a general framework for the high-throughput screening of molecule binding to materials surfaces, which has important applications in drug delivery, (bio-) catalysis, biosensing, and biomaterial engineering.

7.
Nano Lett ; 19(9): 6554-6563, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31418579

RESUMEN

As a key player in blood coagulation and tissue repair, fibrinogen has gained increasing attention to develop nanofibrous biomaterial scaffolds for wound healing. Current techniques to prepare protein nanofibers, like electrospinning or extrusion, are known to induce lasting changes in the protein conformation. Often, such secondary changes are associated with amyloid transitions, which can evoke unwanted disease mechanisms. Starting from our recently introduced technique to self-assemble fibrinogen scaffolds in physiological salt buffers, we here investigated the morphology and secondary structure of our novel fibrinogen nanofibers. Aiming at optimum self-assembly conditions for wound healing scaffolds, we studied the influence of fibrinogen concentration and pH on the protein conformation. Using circular dichroism and Fourier-transform infrared spectroscopy, we observed partial transitions from α-helical structures to ß-strands upon fiber formation. Interestingly, a staining with thioflavin T revealed that this conformational transition was not associated with any amyloid formation. Toward novel scaffolds for wound healing, which are stable in aqueous environment, we also introduced cross-linking of fibrinogen scaffolds in formaldehyde vapor. This treatment allowed us to maintain the nanofibrous morphology while the conformation of fibrinogen nanofibers was redeveloped toward a more native state after rehydration. Altogether, self-assembled fibrinogen scaffolds are excellent candidates for novel wound healing systems since their multiscale structures can be well controlled without inducing any pathogenic amyloid transitions.


Asunto(s)
Fibrinógeno/química , Nanofibras/química , Cicatrización de Heridas , Fibrinógeno/farmacología , Humanos , Nanofibras/uso terapéutico
8.
Phys Chem Chem Phys ; 21(8): 4663-4672, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30747204

RESUMEN

Polypeptide based biosilica composites show promise as next generation multi-functional nano-platforms for diagnostics and bio-catalytic applications. Following the identification of a strong silica binder (LDHSLHS) by phage display, we conduct structural analysis of the polypeptide at the interface with amorphous silica nanoparticles in an aqueous environment. Our approach relies on modelling infrared and Raman spectral responses using predictions of molecular dynamics simulations and quantum studies of the normal modes for several potential structures. By simultaneously fitting both infrared and Raman responses in the amide spectral region, we show that the main structural conformer has a beta-like central region and helix-twisted terminals. Classical simulations, as conducted previously (Chem. Mater., 2014, 26, 5725), predict that the association of the main structure with the interface is stimulated by electrostatic interactions though surface binding also requires spatially distributed sodium ions to compensate for negatively charged acidic silanol groups. Accordingly, diffusion of sodium ions would contribute to a stochastic character of the peptide association with the surface. Consistent with the described dynamics at the interface, the results obtained from isothermal titration calorimetry (ITC) confirm a significant enhancement of polypeptide binding to silica at higher concentrations of Na+. The results of this study suggest that the tertiary structure of a phage capsid protein plays a significant role in regulating the conformation of peptide LDHSLHS, increasing its binding to silica during the phage display process. The results presented here support design-led engineering of polypeptide-silica nanocomposites for bio-technological applications.


Asunto(s)
Péptidos/química , Dióxido de Silicio/química , Sitios de Unión , Técnicas de Visualización de Superficie Celular , Simulación de Dinámica Molecular , Nanopartículas/química , Tamaño de la Partícula , Unión Proteica , Sodio/química , Electricidad Estática , Relación Estructura-Actividad , Propiedades de Superficie , Termodinámica , Agua/química
9.
Langmuir ; 34(28): 8255-8263, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29924624

RESUMEN

In this contribution, the effect of silica particle size (28 and 210 nm) and surface chemistry (i.e., hydroxyl, methyl, or amino groups) on peptide binding response is studied with a specific emphasis on the effect of the extent of functionalization on binding. Exhaustive characterization of the silica surfaces was crucial for knowledge of the chemistry and topography of the solid surface under study and, thus, to understand their impact on adsorption and the conformational ensemble of the peptides. The extent of surface functionalization was shown to be particle-size dependent, a higher level of 3-aminopropyl functionality being obtained for smaller particles, whereas a higher degree of methyl group functionality was found for the larger particles. We demonstrated that peptide interactions at the aqueous interface were not only influenced by the surface chemistry but also by the extent of functionalization where a "switch" of peptide adsorption behavior was observed, whereas the changes in the conformational ensemble revealed by circular dichroism were independent of the extent of functionalization. In addition to electrostatic interactions and hydrogen bonding driving interaction at the silica-peptide interface, the data obtained suggested that stronger interactions such as hydrophobic and/or covalent interactions may moderate the interaction. The insights gained from this peptide-mineral study give a more comprehensive view of mechanisms concerning mineral-peptide interactions which may allow for the design and synthesis of novel (nano)materials with properties tailored for specific applications.


Asunto(s)
Péptidos/metabolismo , Dióxido de Silicio/metabolismo , Adsorción , Enlace de Hidrógeno , Péptidos/química , Dióxido de Silicio/química , Propiedades de Superficie
10.
J Nat Prod ; 81(2): 400-404, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29381357

RESUMEN

Three new and seven known calopins were isolated from Caloboletus radicans. The structures of the new cyclocalopins, 8-deacetylcyclocalopin B (1), cyclocalopin A-15-ol (2), and 12,15-dimethoxycyclocalopin A (3), were mainly elucidated by NMR and MS data analysis. The stereochemistry of 1-3 was assigned based on NOE correlations and coupling constants and by comparison of their CD spectra with those of similar known calopins. While 1-10 were inactive against two cancer cell lines, they displayed anti-staphylococcal activity against methicillin-resistant Staphylococcus aureus strains (MRSA) with MIC values of 16-256 µg/mL. Moreover, some calopins were active against the fish pathogen Enterococcus faecalis F1B1.


Asunto(s)
Antibacterianos/química , Cuerpos Fructíferos de los Hongos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Agaricales/química , Línea Celular Tumoral , Enterococcus faecalis/efectos de los fármacos , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Infecciones Estafilocócicas/tratamiento farmacológico
11.
ACS Biomater Sci Eng ; 4(12): 4036-4050, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33418804

RESUMEN

Adsorption of enzymes on solid surfaces may lead to conformational changes that reduce their catalytic conversion activity and are thus detrimental to the efficiency of biotechnology or biosensing applications. This work is a joint theoretical and experimental endeavor in which we identify and quantify the conformational changes that chymotrypsin undergoes when in contact with the surface of amorphous silica nanoparticles. For this purpose, we use circular dichroism spectroscopy, standard molecular dynamics, and advanced-sampling methods. Only the combination of these techniques allowed us to pinpoint a destabilization effect of silica on specific structural motifs of chymotrypsin. They are linked by the possibility of theoretically predicting CD spectra, allowing us to elucidate the source of the experimentally observed spectral changes. We find that chymotrypsin loses part of its helical content upon adsorption, with minor perturbation of its overall tertiary structure, associated with changes in the aromatic interactions. We demonstrate that the C-terminal helical fragment is unfolded as an isolated oligopeptide in pure water, folded as an α-helix as terminus of chymotrypsin in solution, and again partly disordered when the protein is adsorbed on silica. We believe that the joint methodology introduced in this manuscript has a direct general applicability to investigate any biomolecule-inorganic surface system. Methods to theoretically predict circular dichroism spectra from atomistic simulations were compared and improved. The drawbacks of the approaches are discussed; in particular, the limited capability of advanced-sampling MD schemes to explore the conformational phase space of large proteins and the dependency of the predicted ellipticity bands on the choice of calculation parameters.

12.
Environ Sci Technol ; 51(8): 4297-4305, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28318244

RESUMEN

Zinc oxide (ZnO) is of widespread use for numerous applications, including many in the cosmetic industry. Thus, ZnO particles are quite likely to enter the environment. ZnO may be harmful because of the release of cytotoxic Zn2+ ions during dissolution reactions. Here, we analyze the dissolution kinetics of the polar zinc-terminated (000-1) and nonpolar (10-10) crystal surfaces in ultrapure water to examine the impact of the crystal defects on dissolution. By using a complementary approach of atomic force microscopy and vertical scanning interferometry, we quantify the difference in reaction rate between the crystal faces, the overall range of rate variability, and the rate components that combine to an overall rate. The mean dissolution rate of the (000-1) crystal surface is more than 4 times that of the (10-10) surface. By using the rate spectrum analysis, we observed an overall dissolution rate variability of more than 1 order of magnitude. The rate components and the range of dissolution rate are important input parameters in reactive transport models for the prediction of potential release of Zn2+ into the environment.


Asunto(s)
Solubilidad , Óxido de Zinc/química , Cinética , Microscopía de Fuerza Atómica , Zinc/química
13.
Analyst ; 140(15): 5243-50, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26075518

RESUMEN

We have developed a novel aptasensor based on single-molecule force spectroscopy (SMFS) capable of detecting mercury ions (Hg(2+)) with sub-nM sensitivity. The single-strand (ss) DNA aptamer used in this work is rich in thymine (T) and readily forms T-Hg(2+)-T complexes in the presence of Hg(2+). The aptamer was conjugated to an atomic force microscope (AFM) probe, and the adhesion force between the probe and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). The presence of Hg(2+) ions above a concentration threshold corresponding to the affinity constant of the ions for the aptamer (about 5 × 10(9) M(-1)) could be easily detected by a change of the measured adhesion force. With our chosen aptamer, we could reach an Hg(2+) detection limit of 100 pM, which is well below the maximum allowable level of Hg(2+) in drinking water. In addition, this aptasensor presents a very high selectivity for Hg(2+) over other metal cations, such as K(+), Ca(2+), Zn(2+), Fe(2+), and Cd(2+). Furthermore, the effects of the ionic strength and loading rate on the Hg(2+) detection were evaluated. Its simplicity, reproducibility, high selectivity and sensitivity make our SMFS-based aptasensor advantageous with respect to other current Hg(2+) sensing methods. It is expected that our strategy can be exploited for monitoring the pollution of water environments and the safety of potentially contaminated food.


Asunto(s)
Aptámeros de Nucleótidos/química , Agua Potable/análisis , Mercurio/análisis , Microscopía de Fuerza Atómica/métodos , Contaminantes Químicos del Agua/análisis , Secuencia de Bases , Técnicas Biosensibles/métodos , Cationes Bivalentes/análisis , Grafito/química , Límite de Detección , Modelos Moleculares , Timina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA