Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 133(4): 559-572, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38324309

RESUMEN

BACKGROUND AND AIMS: The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS: We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS: The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and ß-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS: Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.


Asunto(s)
Autofagia , Evolución Biológica , Pared Celular , Xilema , Pared Celular/metabolismo , Autofagia/fisiología , Xilema/fisiología , Cycadopsida/fisiología , Floema , Proteínas de Plantas/metabolismo , Magnoliopsida/fisiología , Helechos/fisiología , Helechos/citología
2.
J Vis Exp ; (186)2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35993752

RESUMEN

Infection of Brassica crops by the soilborne protist Plasmodiophora brassicae leads to gall formation on the underground organs. The formation of galls requires cellular reprogramming and changes in the metabolism of the infected plant. This is necessary to establish a pathogen-oriented physiological sink toward which the host nutrients are redirected. For a complete understanding of this particular plant-pathogen interaction and the mechanisms by which host growth and development are subverted and repatterned, it is essential to track and observe the internal changes accompanying gall formation with cellular resolution. Methods combining fluorescent stains and fluorescent proteins are often employed to study anatomical and physiological responses in plants. Unfortunately, the large size of galls and their low transparency act as major hurdles in performing whole-mount observations under the microscope. Moreover, low transparency limits the employment of fluorescence microscopy to study clubroot disease progression and gall formation. This article presents an optimized method for fixing and clearing galls to facilitate epifluorescence and confocal microscopy for inspecting P. brassicae-infected galls. A tissue-clearing protocol for rapid optical clearing was used followed by vibratome sectioning to detect anatomical changes and localize gene expression with promoter fusions and reporter lines tagged with fluorescent proteins. This method will prove useful for studying cellular and physiological responses in other pathogen-triggered structures in plants, such as nematode-induced syncytia and root knots, as well as leaf galls and deformations caused by insects.


Asunto(s)
Arabidopsis , Plasmodiophorida , Arabidopsis/metabolismo , Expresión Génica , Microscopía Fluorescente , Enfermedades de las Plantas/genética , Plasmodiophorida/genética
3.
Planta ; 254(1): 15, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34184131

RESUMEN

MAIN CONCLUSION: Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper development of root tissues as well as the senescence of the entire organ. Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as during plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tissue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future studies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure whether the analyzed process is autophagy-dependent or not.


Asunto(s)
Autofagia , Raíces de Plantas , Desarrollo de la Planta , Plantas
4.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401671

RESUMEN

Beech seeds are produced irregularly, and there is a need for long-term storage of these seeds for forest management practices. Accumulated reactive oxygen species broadly oxidize molecules, including amino acids, such as methionine, thereby contributing to decreased seed viability. Methionine oxidation can be reversed by the activity of methionine sulfoxide reductases (Msrs), which are enzymes involved in the regulation of many developmental processes and stress responses. Two types of Msrs, MsrB1 and MsrB2, were investigated in beech seeds to determine their abundance and localization. MsrB1 and MsrB2 were detected in the cortical cells and the outer area of the vascular cylinder of the embryonic axes as well as in the epidermis and parenchyma cells of cotyledons. The abundances of MsrB1 and MsrB2 decreased during long-term storage. Ultrastructural analyses have demonstrated the accumulation of these proteins in protein storage vacuoles and in the cytoplasm, especially in close proximity to the cell membrane. In silico predictions of possible Msr interactions supported our findings. In this study, we investigate the contribution of MsrB1 and MsrB2 locations in the regulation of seed viability and suggest that MsrB2 is linked with the longevity of beech seeds via association with proper utilization of storage material.


Asunto(s)
Cotiledón/metabolismo , Fagus/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Supervivencia Celular/fisiología , Biología Computacional , Cotiledón/citología , Fagus/citología , Fagus/embriología , Fagus/crecimiento & desarrollo , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Unión Proteica , Semillas/citología , Semillas/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA