Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Fluids Barriers CNS ; 20(1): 95, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114994

RESUMEN

Autoreactive T lymphocytes crossing the blood-brain barrier (BBB) into the central nervous system (CNS) play a crucial role in the initiation of demyelination and neurodegeneration in multiple sclerosis (MS). Recently, extracellular vesicles (EV) secreted by BBB endothelial cells (BBB-EC) have emerged as a unique form of cell-to-cell communication that contributes to cerebrovascular dysfunction. However, the precise impact of different size-based subpopulations of BBB-EC-derived EV (BBB-EV) on the early stages of MS remains unclear. Therefore, our objective was to investigate the content and function of distinct BBB-EV subpopulations in regulating BBB integrity and their role in T cell transendothelial migration, both in vitro and in vivo. Our study reveals that BBB-ECs release two distinct size based EV populations, namely small EV (sEV; 30-150 nm) and large EV (lEV; 150-300 nm), with a significantly higher secretion of sEV during inflammation. Notably, the expression patterns of cytokines and adhesion markers differ significantly between these BBB-EV subsets, indicating specific functional differences in the regulation of T cell migration. Through in vitro experiments, we demonstrate that lEV, which predominantly reflect their cellular source, play a major role in BBB integrity loss and the enhanced migration of pro-inflammatory Th1 and Th17.1 cells. Conversely, sEV appear to protect BBB function by inducing an anti-inflammatory phenotype in BBB-EC. These findings align with our in vivo data, where the administration of sEV to mice with experimental autoimmune encephalomyelitis (EAE) results in lower disease severity compared to the administration of lEV, which exacerbates disease symptoms. In conclusion, our study highlights the distinct and opposing effects of BBB-EV subpopulations on the BBB, both in vitro and in vivo. These findings underscore the need for further investigation into the diagnostic and therapeutic potential of BBB-EV in the context of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Vesículas Extracelulares , Esclerosis Múltiple , Ratones , Animales , Células Endoteliales/metabolismo , Sistema Nervioso Central/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Barrera Hematoencefálica/metabolismo , Vesículas Extracelulares/metabolismo
2.
J Inflamm Res ; 14: 4503-4507, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522118

RESUMEN

Chronic low-grade systemic inflammation is frequently observed in patients with chronic obstructive pulmonary disease (COPD), e.g., elevated pentameric CRP (pCRP). However, pCRP can dissociate to form monomeric CRP (mCRP) which exhibits a clear pro-inflammatory behaviour in contrast to the more anti-inflammatory properties of pCRP. Therefore, mCRP may be an informative biomarker to demonstrate chronic low-grade systemic inflammation. This was confirmed by analysing serum samples from 38 patients with COPD and 18 non-COPD control persons (NCCP). mCRP was significantly elevated in patients with COPD vs. NCCP, indicating that mCRP might be considered as a new sensitive marker of chronic low-grade systemic inflammation.

3.
Small ; 17(5): e2006786, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33448084

RESUMEN

Extracellular vesicles (EV) are biological nanoparticles that play an important role in cell-to-cell communication. The phenotypic profile of EV populations is a promising reporter of disease, with direct clinical diagnostic relevance. Yet, robust methods for quantifying the biomarker content of EV have been critically lacking, and require a single-particle approach due to their inherent heterogeneous nature. Here, multicolor single-molecule burst analysis microscopy is used to detect multiple biomarkers present on single EV. The authors classify the recorded signals and apply the machine learning-based t-distributed stochastic neighbor embedding algorithm to cluster the resulting multidimensional data. As a proof of principle, the authors use the method to assess both the purity and the inflammatory status of EV, and compare cell culture and plasma-derived EV isolated via different purification methods. This methodology is then applied to identify intercellular adhesion molecule-1 specific EV subgroups released by inflamed endothelial cells, and to prove that apolipoprotein-a1 is an excellent marker to identify the typical lipoprotein contamination in plasma. This methodology can be widely applied on standard confocal microscopes, thereby allowing both standardized quality assessment of patient plasma EV preparations, and diagnostic profiling of multiple EV biomarkers in health and disease.


Asunto(s)
Células Endoteliales , Vesículas Extracelulares , Análisis por Conglomerados , Humanos , Plasma , Aprendizaje Automático no Supervisado
4.
J Extracell Vesicles ; 9(1): 1801153, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32944190

RESUMEN

Substantial research has been devoted to discovering the translational potential of extracellular vesicles (EV) as a reliable liquid biopsy in the diagnosis and monitoring of several life-affecting diseases, including chronic inflammatory diseases (CID). So far, the role of EV in the development of CID remains largely unknown due to the lack of specific tools to separate the disease-associated EV subtypes. Therefore, this study aims to fractionate inflammation-associated EV (sub)populations using a two-step separation strategy based on their size combined with a specific inflammatory marker (ICAM-1) and to unravel their proteome signature and functional integrity at the onset of vascular inflammation. Here, we report that vascular endothelial cells upon inflammation release two heterogeneous size-based populations of EV (EV-10 K and EV-110 K) sharing a cocktail of inflammatory proteins, chemokines, and cytokines (chiefly: ICAM-1, CCL-2, CCL-4, CCL-5, IL-8 and CXCL-10). The co-enrichment of ICAM-1 and classical EV markers within these two size-based populations gave us a promising opportunity to further separate the inflammation-associated EV subpopulations, using an immuno-affinity methodology. Protein profiling of EV subpopulations highlighted that the phenotypic state of inflamed endothelial cells is preferentially mirrored in secreted medium- and large-sized ICAM-1 (+) EV. As functional players, the smaller-sized EV and especially their ICAM-1 (+) EV subpopulation promote the migration of THP-1 monocytes, whereas the large ICAM-1 (+) EV were more potent to induce ICAM-1 expression in recipient endothelial cells. This study provides new insights into the immunomodulatory content of inflammation-associated EV (sub)populations and their functional contributions to the initiation of vascular inflammation (ICAM-1 expression) and monocyte mobilization.

5.
Cells ; 9(2)2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012900

RESUMEN

Blood vessel formation or angiogenesis is a key process for successful tooth regeneration. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) possess paracrine proangiogenic properties, which are, at least partially, induced by their extracellular vesicles (EVs). However, the isolation of BM-MSCs is associated with several drawbacks, which could be overcome by MSC-like cells of the teeth, called dental pulp stromal cells (DPSCs). This study aims to compare the angiogenic content and functions of DPSC and BM-MSC EVs and conditioned medium (CM). The angiogenic protein profile of DPSC- and BM-MSC-derived EVs, CM and EV-depleted CM was screened by an antibody array and confirmed by ELISA. Functional angiogenic effects were tested in transwell migration and chicken chorioallantoic membrane assays. All secretion fractions contained several pro- and anti-angiogenic proteins and induced in vitro endothelial cell motility. This chemotactic potential was higher for (EV-depleted) CM, compared to EVs with a stronger effect for BM-MSCs. Finally, BM-MSC CM, but not DPSC CM, nor EVs, increased in ovo angiogenesis. In conclusion, we showed that DPSCs are less potent in relation to endothelial cell chemotaxis and in ovo neovascularization, compared to BM-MSCs, which emphasizes the importance of choice of cell type and secretion fraction for stem cell-based regenerative therapies in inducing angiogenesis.


Asunto(s)
Pulpa Dental/citología , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica , Adolescente , Inductores de la Angiogénesis/metabolismo , Animales , Factores Quimiotácticos/farmacología , Pollos , Endocitosis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/ultraestructura , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/ultraestructura , Neovascularización Fisiológica/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , Factores de Tiempo , Adulto Joven
6.
J Extracell Vesicles ; 10(1): e12022, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33708355

RESUMEN

Microglia, the immunocompetent cells of the central nervous system (CNS), play an important role in maintaining cellular homeostasis in the CNS. These cells secrete immunomodulatory factors including nanovesicles and participate in the removal of cellular debris by phagocytosis or autophagy. Accumulating evidence indicates that specifically the cellular exchange of small extracellular vesicles (EVs), participates in physiology and disease through intercellular communication. However, the contribution of microglial-derived extracellular vesicles (M-EVs) to the maintenance of microglia homeostasis and how M-EVs could influence the phenotype and gene function of other microglia subtypes is unclear. In addition, knowledge of canonical signalling pathways of inflammation and immunity gene expression patterns in human microglia exposed to M-EVs is limited. Here, we analysed the effects of M-EVs produced in vitro by either tumour necrosis factor alpha (TNFα) activated or non-activated microglia BV2 cells. We showed that M-EVs are internalized by both mouse and human C20 microglia cells and that the uptake of M-EVs in microglia induced autophagic vesicles at various stages of degradation including autophagosomes and autolysosomes. Consistently, stimulation of microglia with M-EVs increased the protein expression of the autophagy marker, microtubule-associated proteins 1A/1B light chain 3B isoform II (LC3B-II), and promoted autophagic flux in live cells. To elucidate the biological activities occurring at the transcriptional level in C20 microglia stimulated with M-EVs, the gene expression profiles, potential upstream regulators, and enrichment pathways were characterized using targeted RNA sequencing. Inflammation and immunity transcriptome gene panel sequencing of both activated and normal microglia stimulated with M-EVs showed involvement of several canonical pathways and reduced expression of key genes involved in neuroinflammation, inflammasome and apoptosis signalling pathways compared to control cells. In this study, we provide the perspective that a beneficial activity of in vitro cell culture produced EVs could be the modulation of autophagy during cellular stress. Therefore, we use a monoculture system to study microglia-microglia crosstalk which is important in the prevention and propagation of inflammation in the brain. We demonstrate that in vitro produced microglial EVs are able to influence multiple biological pathways and promote activation of autophagy in order to maintain microglia survival and homeostasis.


Asunto(s)
Autofagia , Vesículas Extracelulares/metabolismo , Microglía/metabolismo , Transducción de Señal , Animales , Línea Celular , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/biosíntesis
7.
Front Immunol ; 9: 1789, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30131806

RESUMEN

Extracellular vesicles (EV) mediated intercellular communication between monocytes and endothelial cells (EC) might play a major role in vascular inflammation and atherosclerotic plaque formation during cardiovascular diseases (CVD). While critical involvement of small (exosomes) and large EV (microvesicles) in CVD has recently been appreciated, the pro- and/or anti-inflammatory impact of a bulk EV (exosomes + microvesicles) on vascular cell function as well as their inflammatory capacity are poorly defined. This study aims to unravel the immunomodulatory content of EV bulk derived from control (uEV) and TNF-α induced inflamed endothelial cells (tEV) and to define their capacity to affect the inflammatory status of recipients monocytes (THP-1) and endothelial cells (HUVEC) in vitro. Here, we show that EV derived from inflamed vascular EC were readily taken up by THP-1 and HUVEC. Human inflammation antibody array together with ELISA revealed that tEV contain a pro-inflammatory profile with chemotactic mediators, including intercellular adhesion molecule (ICAM)-1, CCL-2, IL-6, IL-8, CXCL-10, CCL-5, and TNF-α as compared to uEV. In addition, EV may mediate a selective transfer of functional inflammatory mediators to their target cells and modulate them toward either pro-inflammatory (HUVEC) or anti/pro-inflammatory (THP-1) mode. Accordingly, the expression of pro-inflammatory markers (IL-6, IL-8, and ICAM-1) in tEV-treated HUVEC was increased. In the case of THP-1, EC-EV do induce a mixed of pro- and anti-inflammatory response as indicated by the elevated expression of ICAM-1, CCL-4, CCL-5, and CXCL-10 proteins. At the functional level, EC-EV mediated inflammation and promoted the adhesion and migration of THP-1. Taken together, our findings proved that the EV released from inflamed EC were enriched with a cocktail of inflammatory markers, chemokines, and cytokines which are able to establish a targeted cross-talk between EC and monocytes and reprogramming them toward a pro- or anti-inflammatory phenotypes.


Asunto(s)
Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Mediadores de Inflamación/metabolismo , Monocitos/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor de Necrosis Tumoral alfa/metabolismo
8.
Nanomedicine ; 13(5): 1663-1671, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28366819

RESUMEN

A major conceptual breakthrough in cell signaling has been the finding of EV as new biomarker shuttles in body fluids. Now, one of the major challenges in using these nanometer-sized biological entities as diagnostic marker is the development of translational methodologies to profile them. SPR offers a promising label-free and real time platform with a high potential for biomarker detection. Therefore, we aimed to develop a uniform SPR methodology to detect specific surface markers on EV derived from patient with CHD. EVs having an approximate size range between 30 and 100 nm (~48.5%) and 100-300 nm (~51.5%) were successfully isolated. The biomarker profile of EV was verified using immunogold labeling, ELISA and SPR. Using SPR, we demonstrated an increased binding of EV derived from patients with CHD to anti-ICAM-1 antibodies as compared to EV from healthy donors. Our current findings open up novel opportunities for in-depth and label-free investigation of EV.


Asunto(s)
Biomarcadores , Células Endoteliales , Vesículas Extracelulares , Resonancia por Plasmón de Superficie , Enfermedad Coronaria , Humanos , Inflamación , Nanotecnología/métodos
9.
Biosensors (Basel) ; 6(3)2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27399790

RESUMEN

Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids) usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1), an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL). Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR), respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets-a must for the development of advanced miniaturized, multi-biomarker biosensor platforms.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Anticuerpos de Dominio Único , Molécula 1 de Adhesión Celular Vascular , Antígenos , Aterosclerosis/metabolismo , Tampones (Química) , Humanos , Unión Proteica , Silicio , Resonancia por Plasmón de Superficie
10.
Int J Nanomedicine ; 10: 5237-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26316752

RESUMEN

Over the last three decades, phage display technology has been used for the display of target-specific biomarkers, peptides, antibodies, etc. Phage display-based assays are mostly limited to the phage ELISA, which is notorious for its high background signal and laborious methodology. These problems have been recently overcome by designing a dual-display phage with two different end functionalities, namely, streptavidin (STV)-binding protein at one end and a rheumatoid arthritis-specific autoantigenic target at the other end. Using this dual-display phage, a much higher sensitivity in screening specificities of autoantibodies in complex serum sample has been detected compared to single-display phage system on phage ELISA. Herein, we aimed to develop a novel, rapid, and sensitive dual-display phage to detect autoantibodies presence in serum samples using quartz crystal microbalance with dissipation monitoring as a sensing platform. The vertical functionalization of the phage over the STV-modified surfaces resulted in clear frequency and dissipation shifts revealing a well-defined viscoelastic signature. Screening for autoantibodies using antihuman IgG-modified surfaces and the dual-display phage with STV magnetic bead complexes allowed to isolate the target entities from complex mixtures and to achieve a large response as compared to negative control samples. This novel dual-display strategy can be a potential alternative to the time consuming phage ELISA protocols for the qualitative analysis of serum autoantibodies and can be taken as a departure point to ultimately achieve a point of care diagnostic system.


Asunto(s)
Autoanticuerpos/química , Biblioteca de Péptidos , Tecnicas de Microbalanza del Cristal de Cuarzo , Artritis Reumatoide/inmunología , Bacteriófagos , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/química , Péptidos , Unión Proteica , Estreptavidina/química , Resonancia por Plasmón de Superficie
11.
J Steroid Biochem Mol Biol ; 147: 10-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25465478

RESUMEN

Aptamers, short synthetic ssDNA or RNA molecules with a specific three-dimensional structure, are promising recognition elements in biosensor technology. In vitro generation of aptamers with high sensitivity and specificity toward a broad range of analytes has been achieved using the systematic evolution of ligands by exponential enrichment (SELEX) process. This iterative pathway of aptamer generation consists of sequential positive and counterselection steps. The present research aimed to select two sets of ssDNA aptamers which both are able to bind to different functional groups on the cyclopentanoperhydrophenanthrene ring of 17ß-estradiol (E2). By repetitively switching between positive selection steps using E2 as target molecule and counterselection steps with nortestosterone as countermolecule, aptamers were successfully selected against the hydroxylated aromatic A ring of E2. Additionally, an aptamer which binds the upper segments of the B, C and D ring of the cyclopentanoperhydrophenanthrene ring of E2 was generated after repetitively swapping between positive selection steps with E2 as target molecule and counterselection steps with dexamethasone as countermolecule. Epitope specificity of the aptamers was demonstrated by evaluating their binding responses toward a number of steroid hormones structurally related to E2. The selected aptamers with affinities for different functional groups of E2 can potentially be applied to develop a cross-reactive aptasensor. This aptasensor introduces a promising tool for the future of in-field real-time monitoring of a wide range of steroid hormones.


Asunto(s)
Aptámeros de Nucleótidos/química , Estradiol/análisis , Resonancia por Plasmón de Superficie/métodos , Secuencia de Bases , Datos de Secuencia Molecular , Técnica SELEX de Producción de Aptámeros/métodos
12.
J Biomed Opt ; 19(9): 97006, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25260868

RESUMEN

A microcavity-based deoxyribonucleic acid (DNA) optical biosensor is demonstrated for the first time using synthetic sapphire for the optical cavity. Transmitted and elastic scattering intensity at 1510 nm are analyzed from a sapphire microsphere (radius 500 µm, refractive index 1.77) on an optical fiber half coupler. The 0.43 nm angular mode spacing of the resonances correlates well with the optical size of the sapphire sphere. Probe DNA consisting of a 36-mer fragment was covalently immobilized on a sapphire microsphere and hybridized with a 29-mer target DNA. Whispering gallery modes (WGMs) were monitored before the sapphire was functionalized with DNA and after it was functionalized with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). The shift in WGMs from the surface modification with DNA was measured and correlated well with the estimated thickness of the add-on DNA layer. It is shown that ssDNA is more uniformly oriented on the sapphire surface than dsDNA. In addition, it is shown that functionalization of the sapphire spherical surface with DNA does not affect the quality factor (Q . ≈ 04) of the sapphire microspheres. The use of sapphire is especially interesting because this material is chemically resilient, biocompatible, and widely used for medical implants.


Asunto(s)
Óxido de Aluminio/química , ADN/química , Microesferas , Óptica y Fotónica/métodos , Dispersión de Radiación , ADN/análisis , Luz , Microscopía Confocal
13.
Int J Nanomedicine ; 9: 1629-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24741310

RESUMEN

Conventional neonatal diagnosis of phenylketonuria is based on the presence of abnormal levels of phenylalanine in the blood. However, for carrier detection and prenatal diagnosis, direct detection of disease-correlated mutations is needed. To speed up and simplify mutation screening in genes, new technologies are developed. In this study, a heat-transfer method is evaluated as a mutation-detection technology in entire exons of the phenylalanine hydroxylase (PAH) gene. This method is based on the change in heat-transfer resistance (R(th)) upon thermal denaturation of dsDNA (double-stranded DNA) on nanocrystalline diamond. First, ssDNA (single-stranded DNA) fragments that span the size range of the PAH exons were successfully immobilized on nanocrystalline diamond. Next, it was studied whether an R(th) change could be observed during the thermal denaturation of these DNA fragments after hybridization to their complementary counterpart. A clear R(th) shift during the denaturation of exon 5, exon 9, and exon 12 dsDNA was observed, corresponding to lengths of up to 123 bp. Finally, R(th) was shown to detect prevalent single-nucleotide polymorphisms, c.473G>A (R158Q), c.932T>C (p.L311P), and c.1222C>T (R408W), correlated with phenylketonuria, displaying an effect related to the different melting temperatures of homoduplexes and heteroduplexes.


Asunto(s)
Análisis Mutacional de ADN/métodos , Predisposición Genética a la Enfermedad/genética , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/diagnóstico , Fenilcetonurias/genética , Polimorfismo de Nucleótido Simple/genética , Termografía/métodos , Secuencia de Bases , Marcadores Genéticos/genética , Humanos , Datos de Secuencia Molecular , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Temperatura de Transición
14.
Appl Microbiol Biotechnol ; 98(14): 6365-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24764015

RESUMEN

M13 filamentous bacteriophage has been used in displaying disease-specific antibodies, biomarkers, and peptides. One of the major drawbacks of using phage in diagnostic assays is the aspecific adsorption of proteins leading to a high background signal and decreasing sensitivity. To deal with this, we developed a genetically pure, exchangeable dual-display phage system in which biomarkers and streptavidin-binding protein (SBP) are displayed at opposite ends of the phage. This approach allows for sample purification, using streptavidin-coated magnetic beads resulting in a higher sensitivity of signal detection assays. Our dual-display cassette system approach also allows for easy exchange of both the anchor protein (SBP) and the displayed biomarker. The presented principle is applied for the detection of antibody reactivity against UH-RA.21 which is a good candidate biomarker for rheumatoid arthritis (RA). The applicability of dual-display phage preparation using a helper plasmid system is demonstrated, and its increased sensitivity in phage ELISA assays using patient serum samples is shown.


Asunto(s)
Autoanticuerpos/sangre , Técnicas de Visualización de Superficie Celular/métodos , Inovirus/genética , Tamizaje Masivo/métodos , Suero/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Plásmidos , Sensibilidad y Especificidad
15.
Acta Biomater ; 10(5): 2036-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24444774

RESUMEN

Successful engineering of biomimetic tissue relies on an accurate quantification of the mechanical properties of the selected scaffold. To improve this quantification, typical bulk rheological measurements are often complemented with microscopic techniques, including label-free second harmonic generation (SHG) imaging. Image correlation spectroscopy (ICS) has been applied to obtain quantitative information from SHG images of fibrous scaffolds. However, the typical polarization SHG (P-SHG) effect, which partly defines the shape of the autocorrelation function (ACF), has never been taken into account. Here we propose a new and flexible model to reliably apply ICS to P-SHG images of fibrous structures. By starting from a limited number of straightforward assumptions and by taking into account the P-SHG effect, we were able to cope with the typically observed ACF particularities. Using simulated datasets, the resulting model was thoroughly evaluated and compared with models previously described in the literature. We showed that our new model has no restrictions concerning the fibre length for the density retrieval. For certain length ranges, the model can additionally be used to obtain the average fibre length and the P-SHG related non-zero susceptibility tensor element ratios. From experimental data on collagen type I hydrogels, values of SHG tensor element ratios and fibre thickness were determined which match values reported in the literature, thereby underpinning the validity and applicability of our new model.


Asunto(s)
Colágeno Tipo I/química , Hidrogeles/química , Imagenología Tridimensional/métodos , Análisis Espectral/métodos , Animales , Bovinos , Simulación por Computador
16.
Analyst ; 139(3): 589-95, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24325000

RESUMEN

Current aptamer selection procedures enable limited control and transparency on how the DNA selection pool is evolving. Affinity tests and binding analyses are not always informative. Here we show that real-time PCR provides a valuable tool for the follow-up of aptamer selection. Limited time, work and amount of amplified ssDNA make this an interesting instrument to set-up a SELEX design and monitor the enrichment of oligonucleotides. reMelting Curve Analysis (rMCA) after reannealing under stringent conditions provides information about enrichment, compared to a random library. Monitoring the SELEX process and optimising conditions by means of the proposed methods can increase the selection efficiency in a controlled way. rMCA is applied in enrichment simulations and three different selection procedures. Our results imply that rMCA can be used for different SELEX designs and different targets. SELEX pool diversity analysis by rMCA has been proven to be a useful, reproducible tool to detect and evaluate enrichment of specific binding aptamers while the selection procedure is being performed.


Asunto(s)
Desnaturalización de Ácido Nucleico , Técnica SELEX de Producción de Aptámeros/métodos , Temperatura de Transición , ADN/química , Control de Calidad
17.
ACS Nano ; 6(3): 2712-21, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22356595

RESUMEN

In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , ADN/genética , Calor , Polimorfismo de Nucleótido Simple , Secuencia de Bases , Técnicas Biosensibles/instrumentación , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Electrodos , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenilalanina Hidroxilasa/genética , Propiedades de Superficie , Temperatura de Transición
18.
Biosens Bioelectron ; 26(6): 2987-93, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21185167

RESUMEN

Like antibodies, aptamers are highly valuable as bioreceptor molecules for protein biomarkers because of their excellent selectivity, specificity and stability. The integration of aptamers with semiconducting materials offers great potential for the development of reliable aptasensors. In this paper we present an aptamer-based impedimetric biosensor using a nanocrystalline diamond (NCD) film as a working electrode for the direct and label-free detection of human immunoglobulin E (IgE). Amino (NH(2))-terminated IgE aptamers were covalently attached to carboxyl (COOH)-modified NCD surfaces using carbodiimide chemistry. Electrochemical impedance spectroscopy (EIS) was applied to measure the changes in interfacial electrical properties that arise when the aptamer-functionalized diamond surface was exposed to IgE solutions. During incubation, the formation of aptamer-IgE complexes caused a significant change in the capacitance of the double-layer, in good correspondence with the IgE concentration. The linear dynamic range of IgE detection was from 0.03 µg/mL to 42.8 µg/mL. The detection limit of the aptasensor reached physiologically relevant concentrations (0.03 µg/mL). The NCD-based aptasensor was demonstrated to be highly selective even in the presence of a large excess of IgG. In addition, the aptasensor provided reproducible signals during six regeneration cycles. The impedimetric aptasensor was successfully tested on human serum samples, which opens up the potential of using EIS for direct and label-free detection of IgE levels in blood serum.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles/métodos , Inmunoglobulina E/sangre , Nanopartículas , Aptámeros de Nucleótidos/genética , Secuencia de Bases , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/estadística & datos numéricos , Diamante , Espectroscopía Dieléctrica , Técnicas Electroquímicas , Diseño de Equipo , Humanos , Nanotecnología
19.
Sensors (Basel) ; 9(7): 5600-36, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22346717

RESUMEN

Bio-electronics is a scientific field coupling the achievements in biology with electronics to obtain higher sensitivity, specificity and speed. Biosensors have played a pivotal role, and many have become established in the clinical and scientific world. They need to be sensitive, specific, fast and cheap. Electrochemical biosensors are most frequently cited in literature, often in the context of DNA sensing and mutation analysis. However, many popular electrochemical transduction materials, such as silicon, are susceptible to hydrolysis, leading to loss of bioreceptor molecules from the surface. Hence, increased attention has been shifted towards diamond, which surpasses silicon on many levels.

20.
Langmuir ; 24(14): 7269-77, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18558777

RESUMEN

Label-free detection of DNA molecules on chemically vapor-deposited diamond surfaces is achieved with spectroscopic ellipsometry in the infrared and vacuum ultraviolet range. This nondestructive method has the potential to yield information on the average orientation of single as well as double-stranded DNA molecules, without restricting the strand length to the persistence length. The orientational analysis based on electronic excitations in combination with information from layer thicknesses provides a deeper understanding of biological layers on diamond. The pi-pi* transition dipole moments, corresponding to a transition at 4.74 eV, originate from the individual bases. They are in a plane perpendicular to the DNA backbone with an associated n-pi* transition at 4.47 eV. For 8-36 bases of single- and double-stranded DNA covalently attached to ultra-nanocrystalline diamond, the ratio between in- and out-of-plane components in the best fit simulations to the ellipsometric spectra yields an average tilt angle of the DNA backbone with respect to the surface plane ranging from 45 degrees to 52 degrees . We comment on the physical meaning of the calculated tilt angles. Additional information is gathered from atomic force microscopy, fluorescence imaging, and wetting experiments. The results reported here are of value in understanding and optimizing the performance of the electronic readout of a diamond-based label-free DNA hybridization sensor.


Asunto(s)
ADN/química , Diamante/química , Cristalización , ADN/ultraestructura , Desecación , Microscopía de Fuerza Atómica , Conformación de Ácido Nucleico , Óptica y Fotónica , Espectrofotometría , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA