Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 604(7904): 190-194, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355020

RESUMEN

Type A γ-aminobutyric acid receptors (GABAARs) are pentameric ligand-gated chloride channels that mediate fast inhibitory signalling in neural circuits1,2 and can be modulated by essential medicines including general anaesthetics and benzodiazepines3. Human GABAAR subunits are encoded by 19 paralogous genes that can, in theory, give rise to 495,235 receptor types. However, the principles that govern the formation of pentamers, the permutational landscape of receptors that may emerge from a subunit set and the effect that this has on GABAergic signalling remain largely unknown. Here we use cryogenic electron microscopy to determine the structures of extrasynaptic GABAARs assembled from α4, ß3 and δ subunits, and their counterparts incorporating γ2 instead of δ subunits. In each case, we identified two receptor subtypes with distinct stoichiometries and arrangements, all four differing from those previously observed for synaptic, α1-containing receptors4-7. This, in turn, affects receptor responses to physiological and synthetic modulators by creating or eliminating ligand-binding sites at subunit interfaces. We provide structural and functional evidence that selected GABAAR arrangements can act as coincidence detectors, simultaneously responding to two neurotransmitters: GABA and histamine. Using assembly simulations and single-cell RNA sequencing data8,9, we calculated the upper bounds for receptor diversity in recombinant systems and in vivo. We propose that differential assembly is a pervasive mechanism for regulating the physiology and pharmacology of GABAARs.


Asunto(s)
Benzodiazepinas , Receptores de GABA-A , Transducción de Señal , Benzodiazepinas/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Histamina/metabolismo , Humanos , Ligandos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , RNA-Seq , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestructura , Análisis de la Célula Individual , Ácido gamma-Aminobutírico/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(52): 33216-33224, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33323485

RESUMEN

Import of yeast peroxisomal matrix proteins is initiated by cytosolic receptors, which specifically recognize and bind the respective cargo proteins. At the peroxisomal membrane, the cargo-loaded receptor interacts with the docking protein Pex14p that is tightly associated with Pex17p. Previous data suggest that this interaction triggers the formation of an import pore for further translocation of the cargo. The mechanistic principles, however, are unclear, mainly because structures of higher-order assemblies are still lacking. Here, using an integrative approach, we provide the structural characterization of the major components of the peroxisomal docking complex Pex14p/Pex17p, in a native bilayer environment, and reveal its subunit organization. Our data show that three copies of Pex14p and a single copy of Pex17p assemble to form a 20-nm rod-like particle. The different subunits are arranged in a parallel manner, showing interactions along their complete sequences and providing receptor binding sites on both membrane sides. The long rod facing the cytosol is mainly formed by the predicted coiled-coil domains of Pex14p and Pex17p, possibly providing the necessary structural support for the formation of the import pore. Further implications of Pex14p/Pex17p for formation of the peroxisomal translocon are discussed.

3.
Nature ; 587(7832): 152-156, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087931

RESUMEN

The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the ß3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.


Asunto(s)
Apoferritinas/química , Apoferritinas/ultraestructura , Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/métodos , Receptores de GABA-A/química , Receptores de GABA-A/ultraestructura , Imagen Individual de Molécula/métodos , Animales , Microscopía por Crioelectrón/normas , Descubrimiento de Drogas , Humanos , Ratones , Modelos Moleculares , Polisacáridos/química , Polisacáridos/ultraestructura , Imagen Individual de Molécula/normas
4.
J Struct Biol ; 212(3): 107649, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075486

RESUMEN

HpAC1, a protein from Hippeastrum hybrid cultivars, was previously suggested to be a plant adenylyl cyclase. We describe a structural and enzymatic characterization of HpAC1. A crystal structure of HpAC1 in complex with a non-hydrolyzable GTP analog confirms a generic CYTH architecture, comprising a ß-barrel with an internal substrate site. The structure reveals significant active site differences to AC proteins with CYTH fold, however, and we find that HpAC1 lacks measurable AC activity. Instead, HpAC1 has substantial triphosphatase activity, indicating this protective activity or a related activity as the protein's physiological function.


Asunto(s)
Adenilil Ciclasas/química , Amaryllidaceae/química , Proteínas de Plantas/química , Dominio Catalítico/fisiología , Cristalografía por Rayos X/métodos
5.
Chembiochem ; 19(18): 1927-1933, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-29947468

RESUMEN

Phospholipid nanodiscs are a native-like membrane mimetic that is suitable for structural studies of membrane proteins. Although nanodiscs of different sizes exist for various structural applications, their thermal and long-term stability can vary considerably. Covalently circularized nanodiscs are a perfect tool to overcome these limitations. Existing methods for the production of circularized nanodiscs can be time-consuming and technically demanding. Therefore, an easy in vivo approach, in which circularized membrane scaffold proteins (MSPs) can be directly obtained from Escherichia coli culture, is reported herein. Nostoc punctiforme DnaE split-intein fusions with MSPs of various lengths are used and consistently provide circularized nanodiscs in high yields. With this approach, a large variety of circularized nanodiscs, ranging from 7 to 26 nm in diameter, that are suitable for NMR spectroscopy and electron microscopy (EM) applications can be prepared. These nanodiscs are superior to those of the corresponding linear versions in terms of stability and size homogeneity, which affects the quality of NMR spectroscopy data and EM experiments. Due to their long-term stability and homogeneity, the presented small circular nanodiscs are suited for high-resolution NMR spectroscopy studies, as demonstrated with two membrane proteins of 17 or 32 kDa in size. The presented method will provide easy access to circularized nanodiscs for structural studies of membrane proteins and for applications in which a defined and stable nanodisc size is required.


Asunto(s)
Proteínas Bacterianas/química , ADN Polimerasa III/química , Escherichia coli/química , Inteínas , Proteínas de la Membrana/química , Nanoestructuras/química , Nostoc/química , Proteínas Bacterianas/genética , ADN Polimerasa III/genética , Escherichia coli/genética , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/genética , Modelos Moleculares , Nostoc/genética , Fosfolípidos/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA