Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Transl Oncol ; 44: 101930, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520912

RESUMEN

Tumor employs non-cancerous cells to gain beneficial features that promote growth and survival of cancer cells. Despite intensive research in the area of tumor microenvironment, there is still a lack of reliable and reproducible in vitro model for tumor and tumor-microenvironment cell interaction studies. Herein we report the successful development of a heterogeneous cancer-stroma sphere (CSS) model composed of prostate adenocarcinoma PC3 cells and immortalized mesenchymal stem cells (MSC). The CSS model demonstrated a structured spatial layout of the cells, with stromal cells concentrated at the center of the spheres and tumor cells located on the periphery. Significant increase in the levels of VEGFA, IL-10, and IL1a has been detected in the conditioned media of CSS as compared to PC3 spheres. Single cell RNA sequencing data revealed that VEGFA was secreted by MSC cells within heterogeneous spheroids. Enhanced expression of extracellular membrane (ECM) proteins was also shown for CSS-derived MSCs. Furthermore, we demonstrated that the multicellular architecture altered cancer cell response to chemotherapeutic agents: the inhibition of sphere formation by topotecan was 74.92 ± 4.56 % for PC3 spheres and 45.95 ± 7.84 % for CSS spheres (p < 0.01), docetaxel showed 37,51± 20,88 % and 15,67± 14,08 % inhibition, respectively (p < 0.05). Thus, CSS present an effective in vitro model for examining the extracellular matrix composition and cell-to-cell interactions within the tumor, as well as for evaluating the antitumor activity of drugs.

2.
Biochemistry (Mosc) ; 89(1): 65-83, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38467546

RESUMEN

According to the data from the World Health Organization, about 800 million of the world population had contracted coronavirus infection caused by SARS-CoV-2 by mid-2023. Properties of this virus have allowed it to circulate in the human population for a long time, evolving defense mechanisms against the host immune system. Severity of the disease depends largely on the degree of activation of the systemic immune response, including overstimulation of macrophages and monocytes, cytokine production, and triggering of adaptive T- and B-cell responses, while SARS-CoV-2 evades the immune system actions. In this review, we discuss immune responses triggered in response to the SARS-CoV-2 virus entry into the cell and malfunctions of the immune system that lead to the development of severe disease.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2
3.
J Mol Biol ; 436(9): 168542, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492718

RESUMEN

PrimPol is a human DNA primase-polymerase which restarts DNA synthesis beyond DNA lesions and non-B DNA structures blocking replication. Disfunction of PrimPol in cells leads to slowing of DNA replication rates in mitochondria and nucleus, accumulation of chromosome aberrations, cell cycle delay, and elevated sensitivity to DNA-damaging agents. A defective PrimPol has been suggested to be associated with the development of ophthalmic diseases, elevated mitochondrial toxicity of antiviral drugs and increased cell resistance to chemotherapy. Here, we describe a rare missense PrimPol variant V102A with altered biochemical properties identified in patients suffering from ovarian and cervical cancer. The Val102 to Ala substitution dramatically reduced both the primase and DNA polymerase activities of PrimPol as well as specifically decreased its ability to incorporate ribonucleotides. Structural analysis indicates that the V102A substitution can destabilize the hydrophobic pocket adjacent to the active site, affecting dNTP binding and catalysis.


Asunto(s)
ADN Primasa , ADN Polimerasa Dirigida por ADN , Enzimas Multifuncionales , Mutación Missense , Neoplasias Ováricas , Neoplasias del Cuello Uterino , Femenino , Humanos , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , ADN Primasa/metabolismo , ADN Primasa/química , ADN Primasa/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , Modelos Moleculares , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/química , Conformación Proteica , Neoplasias del Cuello Uterino/genética , Neoplasias Ováricas/genética
4.
Crit Rev Oncol Hematol ; 196: 104297, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350543

RESUMEN

The worldwide incidence rate of cancer of unknown primary (CUP) reaches 5% (Kang et al, 2021; Lee, Sanoff, 2020; Yang et al, 2022). CUP has an alarmingly high mortality rate, with 84% of patients succumbing within the first year following diagnosis (Registration and Service, 2018). Under normal circumstances, tumor cell metastasis follows the «seed and soil¼ hypothesis, displaying a tissue-specific pattern of cancer cell homing behavior based on the microenvironment composition of secondary organs. In this study, we questioned whether seed and soil concept applies to CUP, and whether the pattern of tumor and metastasis manifestations for cancer of known primary (CKP) can be used to inform diagnostic strategies for CUP. We compared data from metastatic and primary CUP foci to the metastasis patterns observed in CKP. Furthermore, we evaluated several techniques for identifying the tissue-of-origin (TOO) in CUP profiling, including DNA, RNA, and epigenetic TOO techniques.


Asunto(s)
Neoplasias Primarias Desconocidas , Animales , Humanos , Neoplasias Primarias Desconocidas/diagnóstico , Neoplasias Primarias Desconocidas/epidemiología , Suelo , Incidencia , Microambiente Tumoral
5.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958742

RESUMEN

Encapsulated phosphotriesterase nanoreactors show their efficacy in the prophylaxis and post-exposure treatment of poisoning by paraoxon. A new enzyme nanoreactor (E-nRs) containing an evolved multiple mutant (L72C/Y97F/Y99F/W263V/I280T) of Saccharolobus solfataricus phosphotriesterase (PTE) for in vivo detoxification of organophosphorous compounds (OP) was made. A comparison of nanoreactors made of three- and di-block copolymers was carried out. Two types of morphology nanoreactors made of di-block copolymers were prepared and characterized as spherical micelles and polymersomes with sizes of 40 nm and 100 nm, respectively. The polymer concentrations were varied from 0.1 to 0.5% (w/w) and enzyme concentrations were varied from 2.5 to 12.5 µM. In vivo experiments using E-nRs of diameter 106 nm, polydispersity 0.17, zeta-potential -8.3 mV, and loading capacity 15% showed that the detoxification efficacy against paraoxon was improved: the LD50 shift was 23.7xLD50 for prophylaxis and 8xLD50 for post-exposure treatment without behavioral alteration or functional physiological changes up to one month after injection. The pharmacokinetic profiles of i.v.-injected E-nRs made of three- and di-block copolymers were similar to the profiles of the injected free enzyme, suggesting partial enzyme encapsulation. Indeed, ELISA and Western blot analyses showed that animals developed an immune response against the enzyme. However, animals that received several injections did not develop iatrogenic symptoms.


Asunto(s)
Organofosfatos , Hidrolasas de Triéster Fosfórico , Animales , Organofosfatos/toxicidad , Paraoxon/toxicidad , Hidrolasas de Triéster Fosfórico/química , Nanotecnología
6.
J Pers Med ; 13(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003936

RESUMEN

Mesenchymal stem cells (MSCs) are pivotal players in tissue repair and hold great promise as cell therapeutic agents for regenerative medicine. Additionally, they play a significant role in the development of various human diseases. Studies on MSC biology have encountered a limiting property of these cells, which includes a low number of passages and a decrease in differentiation potential during in vitro culture. Although common methods of immortalization through gene manipulations of cells are well established, the resulting MSCs vary in differentiation potential compared to primary cells and eventually undergo senescence. This study aimed to immortalize primary adipose-derived MSCs by overexpressing human telomerase reverse transcriptase (hTERT) gene combined with a knockdown of TP53. The research demonstrated that immortalized MSCs maintained a stable level of differentiation into osteogenic and chondrogenic lineages during 30 passages, while also exhibiting an increase in cell proliferation rate and differentiation potential towards the adipogenic lineage. Long-term culture of immortalized cells did not alter cell morphology and self-renewal potential. Consequently, a genetically stable line of immortalized adipose-derived MSCs (iMSCs) was established.

7.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37511298

RESUMEN

Antibiotics inhibit breast cancer stem cells (CSCs) by suppressing mitochondrial biogenesis. However, the effectiveness of antibiotics in clinical settings is inconsistent. This inconsistency raises the question of whether the tumor microenvironment, particularly hypoxia, plays a role in the response to antibiotics. Therefore, the goal of this study was to evaluate the effectiveness of five commonly used antibiotics for inhibiting CSCs under hypoxia using an MCF-7 cell line model. We assessed the number of CSCs through the mammosphere formation assay and aldehyde dehydrogenase (ALDH)-bright cell count. Additionally, we examined the impact of antibiotics on the mitochondrial stress response and membrane potential. Furthermore, we analyzed the levels of proteins associated with therapeutic resistance. There was no significant difference in the number of CSCs between cells cultured under normoxic and hypoxic conditions. However, hypoxia did affect the rate of CSC inhibition by antibiotics. Specifically, azithromycin was unable to inhibit sphere formation in hypoxia. Erythromycin and doxycycline did not reduce the ratio of ALDH-bright cells, despite decreasing the number of mammospheres. Furthermore, treatment with chloramphenicol, doxycycline, and tetracycline led to the overexpression of the breast cancer resistance protein. Our findings suggest that hypoxia may weaken the inhibitory effects of antibiotics on the breast cancer model.


Asunto(s)
Antibacterianos , Neoplasias de la Mama , Humanos , Femenino , Células MCF-7 , Antibacterianos/farmacología , Antibacterianos/metabolismo , Doxiciclina/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas de Neoplasias/metabolismo , Aldehído Deshidrogenasa/metabolismo , Hipoxia/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
8.
Biochemistry (Mosc) ; 87(12): 1662-1678, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36717455

RESUMEN

New coronavirus infection causing COVID-19, which was first reported in late 2019 in China, initiated severe social and economic crisis that affected the whole world. High frequency of the errors in replication of RNA viruses, zoonotic nature of transmission, and high transmissibility allowed betacoronaviruses to cause the third pandemic in the world since the beginning of 2003: SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019. The latest pandemic united scientific community and served as a powerful impetus in the study of biology of coronaviruses: new routes of virus penetration into the human cells were identified, features of the replication cycle were studied, and new functions of coronavirus proteins were elucidated. It should be recognized that the pandemic was accompanied by the need to obtain and publish results within a short time, which led to the emergence of an array of conflicting data and low reproducibility of research results. We systematized and analyzed scientific literature, filtered the results according to reliability of the methods of analysis used, and prepared a review describing molecular mechanisms of functioning of the SARS-CoV-2 coronavirus. This review considers organization of the genome of the SARS-CoV-2 virus, mechanisms of its gene expression and entry of the virus into the cell, provides information on key mutations that characterize different variants of the virus, and their contribution to pathogenesis of the disease.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2 , Reproducibilidad de los Resultados , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Biología
9.
Life (Basel) ; 11(8)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34440558

RESUMEN

Stem properties allow circulating tumor cells (CTCs) to survive in the bloodstream and initiate cancer progression. We aimed to assess the numbers of stem-like CTCs in patients with ovarian cancer (OC) before treatment and during first-line chemotherapy (CT). Flow cytometry was performed (Cytoflex S (Beckman Coulter, CA, USA)) using antibodies against CD45; epithelial markers EpCAM and cytokeratin (CK) 8,18; mesenchymal vimentin (vim); and stem-like CD44, CD133 and ALDH. This study included 38 stage I-IV OC patients (median age 66 (Q1-Q3 53-70)). The CK+vim- counts were higher (p = 0.012) and the CD133+ALDHhigh counts were lower (p = 0.010) before treatment in the neoadjuvant CT group than in the adjuvant group. The patients with ascites had more CK+vim- cells before treatment (p = 0.009) and less EpCAM-vim+ cells during treatment (p = 0.018) than the patients without ascites. All the CTC counts did not differ significantly in paired samples. Correlations were found between the CK-vim+ and CD133+ALDHhigh (r = 0.505, p = 0.027) and EpCAM-vim+ and ALDHhigh (r = 0.597, p = 0.004) cells before but not during treatment. Multivariate Cox regression analysis showed that progression-free survival was longer with the presence of surgical treatment (HR 0.06 95% CI 0.01-0.48, p = 0.009) and fewer CD133+ALDHveryhigh cells (HR 1.06 95% CI 1.02-1.12, p = 0.010). Thus, CD133+ALDH+ CTCs have the greatest prognostic potential in OC among the phenotypes studied.

10.
Curr Pharm Des ; 25(3): 298-312, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31198112

RESUMEN

Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.


Asunto(s)
Daño del ADN , Reparación del ADN , Animales , Línea Celular , ADN , ADN Glicosilasas , ADN Ligasas , ADN Polimerasa Dirigida por ADN , Endonucleasas , Humanos
11.
Front Oncol ; 9: 349, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131259

RESUMEN

Altered expression of many genes and proteins is essential for cancer development and progression. Recently, the affected expression of metadherin (MTDH), also known as AEG-1 (Astrocyte Elevated Gene 1) and Lyric, has been implicated in various aspects of cancer progression and metastasis. Elevated expression of MTDH/AEG-1 has been reported in many cancers including breast, prostate, liver, and esophageal cancers, whereas its expression is low or absent in non-malignant tissues. These expression studies suggest that MTDH may represent a potential tumor associated antigen. MTDH also regulates multiple signaling pathways including PI3K/Akt, NF-κB, Wnt/ß-catenin, and MAPK which cooperate to promote the tumorigenic and metastatic potential of transformed cells. Several microRNA have also been found to be associated with the increased MTDH expression in different cancers. Increased MTDH levels were linked to the tumor chemoresistance making it an attractive novel therapeutic target. In this review, we summarize data on MTDH function in various cancers.

12.
Oncotarget ; 8(41): 70496-70507, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-29050297

RESUMEN

Naturally occurring extracellular vesicles (EVs) play essential roles in intracellular communication and delivery of bioactive molecules. Therefore it has been suggested that EVs could be used for delivery of therapeutics. However, to date the therapeutic application of EVs has been limited by number of factors, including limited yield and full understanding of their biological activities. To address these issues, we analyzed the morphology, molecular composition, fusion capacity and biological activity of Cytochalasin B-induced membrane vesicles (CIMVs). The size of these vesicles was comparable to that of naturally occurring EVs. In addition, we have shown that CIMVs from human SH-SY5Y cells contain elevated levels of VEGF as compared to the parental cells, and stimulate angiogenesis in vitro and in vivo.

13.
Placenta ; 56: 79-85, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28238455

RESUMEN

The placenta and tumors share important characteristics, including a requirement to establish effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new blood supplies is considered a key step in supporting metastases. Therefore the development of novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the molecular processes regulating angiogenesis are well understood in the context of both early placentation and tumorigenesis. In this review we focus on the well-established role of androgen regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand dependent transcription factor. Androgens and the AR are essential for normal male embryonic development, puberty and lifelong health. Defects in androgen signalling are associated with a diverse range of clinical disorders in men and women including disorders of sex development (DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse molecular mechanisms of androgen regulation of angiogenesis and infer the potential significance of these pathways to normal and pathogenic placental function. Finally, we offer potential research applications of androgen-targeting molecules developed to treat cancer as investigative tools to help further delineate the role of androgen signalling in placental function and maternal and offspring health in animal models.


Asunto(s)
Andrógenos/metabolismo , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Placentación/fisiología , Animales , Femenino , Humanos , Neoplasias/patología , Neovascularización Patológica/patología , Embarazo
14.
Methods Mol Biol ; 1406: 121-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26820950

RESUMEN

Cells within the tumor are highly heterogeneous. Only a small portion of the cells within the tumor is capable to generate a new tumor. These cells are called cancer stem cells. Theoretically, cancer stem cells are originally from normal stem cells or early progenitor cells which accumulate the random mutations and undergo an altered version of the normal differentiation process. The cancer stem cell drives tumor progression and its recurrence. Thus, the technique to identify and purify the cancer stem cell is the key in any cancer stem cell research. In this protocol, we provide the basic technology of identification and purification of breast cancer stem cells as well as further functional assays to help the researchers achieve their research goals.


Asunto(s)
Neoplasias de la Mama/patología , Separación Celular/métodos , Células Madre Neoplásicas/patología , Animales , Antígeno CD24/metabolismo , Línea Celular Tumoral , Humanos , Receptores de Hialuranos/metabolismo , Ratones
15.
BMJ Open ; 4(8): e005254, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25180052

RESUMEN

OBJECTIVES: The role of infection in rheumatoid arthritis (RA) has not been determined. We aimed to document the infectious burden and some aspects of antibacterial immunity in a large and prospective cohort study of RA patients in the early and late stages of the disease and in their relatives predisposed to RA. SETTING: Clinical and laboratory examination of all individuals enrolled in the study was performed in the Republican Clinical Hospital, Kazan, Russia. PARTICIPANTS: 376 patients with RA, 251 healthy first-degree relatives and 227 healthy controls without a family history of autoimmune disease (all females) were examined twice annually over more than 10 years. PRIMARY AND SECONDARY OUTCOME MEASURES: The following parameters were investigated: type, duration and frequency of infections, bacterial colonisation and serum levels of IgG to bacteria, serum levels of total Ig, plasma cytokine levels, granulocyte reactive oxygen species production, lysozyme activity and phagocytosis. RESULTS: There were no significant differences in infection rate between healthy controls (median 14 days/year) and RA patients (13). However, infection rates were higher (p<0.001) in healthy relatives (53) and early stage patients (62), which groups also showed heavy bacterial skin colonisation. In contrast, late stage patients had fewer infection days (12; p<0.001) than healthy controls, although bacterial colonisation was still heavy. Phagocyte function and antibacterial antibody generation, together with compensatory cytokine production, were observed to be subnormal in the healthy relatives as well as in RA patients. CONCLUSIONS: We observed a marked increase in overall infections at the time of RA onset, and signs of a defective antibacterial defence mechanism, contrasting with fewer infections in the late RA stage. It can be speculated that frequent early infections initiate a compensatory immune hyper-reactivity which reduces the infection load while stimulating the development of RA in predisposed individuals.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Artritis Reumatoide/inmunología , Autoanticuerpos/sangre , Péptidos Cíclicos/inmunología , Factor Reumatoide/inmunología , Adulto , Anticuerpos Antibacterianos/sangre , Artritis Reumatoide/sangre , Artritis Reumatoide/genética , Autoinmunidad/genética , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Citocinas/sangre , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Péptidos Cíclicos/sangre , Estudios Prospectivos , Factor Reumatoide/sangre , Factor Reumatoide/genética , Federación de Rusia/epidemiología , Factores de Tiempo
16.
Proc Natl Acad Sci U S A ; 111(35): E3689-98, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25071204

RESUMEN

Nitrogen-containing heterocyclic compounds are an important class of molecules that are commonly used for the synthesis of candidate drugs. Phosphatidylinositol-4-phosphate 5-kinase-α (PIP5Kα) is a lipid kinase, similar to PI3K. However, the role of PIP5K1α in oncogenic processes and the development of inhibitors that selectively target PIP5K1α have not been reported. In the present study we report that overexpression of PIP5K1α is associated with poor prognosis in prostate cancer and correlates with an elevated level of the androgen receptor. Overexpression of PIP5K1α in PNT1A nonmalignant cells results in an increased AKT activity and an increased survival, as well as invasive malignant phenotype, whereas siRNA-mediated knockdown of PIP5K1α in aggressive PC-3 cells leads to a reduced AKT activity and an inhibition in tumor growth in xenograft mice. We further report a previously unidentified role for PIP5K1α as a druggable target for our newly developed compound ISA-2011B using a high-throughput KINOMEscan platform. ISA-2011B was discovered during our synthetic studies of C-1 indol-3-yl substituted 1,2,3,4-tetrahydroisoquinolines via a Pictet-Spengler approach. ISA-2011B significantly inhibits growth of tumor cells in xenograft mice, and we show that this is mediated by targeting PIP5K1α-associated PI3K/AKT and the downstream survival, proliferation, and invasion pathways. Further, siRNA-mediated knockdown of PIP5K1α exerts similar effects on PC3 cells as ISA-2011B treatment, significantly inhibiting AKT activity, increasing apoptosis and reducing invasion. Thus, PIP5K1α has high potential as a drug target, and compound ISA-2011B is interesting for further development of targeted cancer therapy.


Asunto(s)
Dicetopiperazinas/farmacología , Indoles/farmacología , Isoquinolinas/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Tetrahidroisoquinolinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Humanos , Masculino , Ratones , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA