Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-36498170

RESUMEN

Extreme disasters, defined as low-probability-high-consequences events, are often due to cascading effects combined to amplifying environmental factors. While such a risk complexity is commonly addressed by the modeling of site-specific multi-risk scenarios, there exists no harmonized approach that considers the full space of possibilities, based on the general relationships between the environment and the perils that populate it. In this article, I define the concept of a digital template for multi-risk R&D and prototyping in the Generic Multi-Risk (GenMR) framework. This digital template consists of a virtual natural environment where different perils may occur. They are geological (earthquakes, landslides, volcanic eruptions), hydrological (river floods, storm surges), meteorological (windstorms, heavy rains), and extraterrestrial (asteroid impacts). Both geological and hydrological perils depend on the characteristics of the natural environment, here defined by two environmental layers: topography and soil. Environmental objects, which alter the layers, are also defined. They are here geomorphic structures linked to some peril source characteristics. Hazard intensity footprints are then generated for primary, secondary, and tertiary perils. The role of the natural environment on intensity footprints and event cascading is emphasized, one example being the generation of a "quake lake". Future developments, à la SimCity, are finally discussed.


Asunto(s)
Desastres , Terremotos , Deslizamientos de Tierra , Inundaciones , Ríos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36232079

RESUMEN

The literature on probabilistic hazard and risk assessment shows a rich and wide variety of modeling strategies tailored to specific perils. On one hand, catastrophe (CAT) modeling, a recent professional and scientific discipline, provides a general structure for the quantification of natural (e.g., geological, hydrological, meteorological) and man-made (e.g., terrorist, cyber) catastrophes. On the other hand, peril characteristics and related processes have yet to be categorized and harmonized to enable adequate comparison, limit silo effects, and simplify the implementation of emerging risks. We reviewed the literature for more than 20 perils from the natural, technological, and socio-economic systems to categorize them by following the CAT modeling hazard pipeline: (1) event source → (2) size distribution → (3) intensity footprint. We defined the following categorizations, which are applicable to any type of peril, specifically: (1) point/line/area/track/diffuse source, (2) discrete event/continuous flow, and (3) spatial diffusion (static)/threshold (passive)/sustained propagation (dynamic). We then harmonized the various hazard processes using energy as the common metric, noting that the hazard pipeline's underlying physical process consists of some energy being transferred from an energy stock (the source), via an event, to the environment (the footprint).


Asunto(s)
Medición de Riesgo , Factores Socioeconómicos
3.
PLoS One ; 17(2): e0263962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176103

RESUMEN

Organized into a global network of critical infrastructures, the oil & gas industry remains to this day the main energy contributor to the world's economy. Severe accidents occasionally occur resulting in fatalities and disruption. We build an oil & gas accident graph based on more than a thousand severe accidents for the period 1970-2016 recorded for refineries, tankers, and gas networks in the authoritative ENergy-related Severe Accident Database (ENSAD). We explore the distribution of potential chains-of-events leading to severe accidents by combining graph theory, Markov analysis and catastrophe dynamics. Using centrality measures, we first verify that human error is consistently the main source of accidents and that explosion, fire, toxic release, and element rupture are the principal sinks, but also the main catalysts for accident amplification. Second, we quantify the space of possible chains-of-events using the concept of fundamental matrix and rank them by defining a likelihood-based importance measure γ. We find that chains of up to five events can play a significant role in severe accidents, consisting of feedback loops of the aforementioned events but also of secondary events not directly identifiable from graph topology and yet participating in the most likely chains-of-events.


Asunto(s)
Accidentes de Trabajo/estadística & datos numéricos , Accidentes/estadística & datos numéricos , Bases de Datos Factuales , Industria Procesadora y de Extracción/estadística & datos numéricos , Yacimiento de Petróleo y Gas/química , Humanos , Factores de Riesgo
4.
Artículo en Inglés | MEDLINE | ID: mdl-33036402

RESUMEN

Some of the most devastating natural events on Earth, such as earthquakes and tropical cyclones, are prone to trigger other natural events, critical infrastructure failures, and socioeconomic disruptions. Man-made disasters may have similar effects, although to a lesser degree. We investigate the space of possible interactions between 19 types of loss-generating events, first by encoding possible one-to-one interactions into an adjacency matrix A, and second by calculating the interaction matrix M of emergent chains-of-events. We first present the impact of 24 topologies of A on M to illustrate the non-trivial patterns of cascading processes, in terms of the space of possibilities covered and of interaction amplification by feedback loops. We then encode A from 29 historical cases of cascading disasters and compute the matching matrix M. We observe, subject to data incompleteness, emergent cascading behaviors in the technological and socioeconomic systems, across all possible triggers (natural or man-made); disease is also a systematic emergent phenomenon. We find interactions being mostly amplified via two events: network failure and business interruption, the two events with the highest in-degree and betweenness centralities. This analysis demonstrates how cascading disasters grow in and cross over natural, technological, and socioeconomic systems.


Asunto(s)
Comercio , Tormentas Ciclónicas , Desastres , Terremotos , Humanos
5.
Nonlinear Dyn ; 101(3): 1847-1869, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32929304

RESUMEN

With the unfolding of the COVID-19 pandemic, mathematical modelling of epidemics has been perceived and used as a central element in understanding, predicting, and governing the pandemic event. However, soon it became clear that long-term predictions were extremely challenging to address. In addition, it is still unclear which metric shall be used for a global description of the evolution of the outbreaks. Yet a robust modelling of pandemic dynamics and a consistent choice of the transmission metric is crucial for an in-depth understanding of the macroscopic phenomenology and better-informed mitigation strategies. In this study, we propose a Markovian stochastic framework designed for describing the evolution of entropy during the COVID-19 pandemic together with the instantaneous reproductive ratio. Then, we introduce and use entropy-based metrics of global transmission to measure the impact and the temporal evolution of a pandemic event. In the formulation of the model, the temporal evolution of the outbreak is modelled by an equation governing the probability distribution that describes a nonlinear Markov process of a statistically averaged individual, leading to a clear physical interpretation. The time-dependent parameters are formulated by adaptive basis functions, leading to a parsimonious representation. In addition, we provide a full Bayesian inversion scheme for calibration together with a coherent strategy to address data unreliability. The time evolution of the entropy rate, the absolute change in the system entropy, and the instantaneous reproductive ratio are natural and transparent outputs of this framework. The framework has the appealing property of being applicable to any compartmental epidemic model. As an illustration, we apply the proposed approach to a simple modification of the susceptible-exposed-infected-removed model. Applying the model to the Hubei region, South Korean, Italian, Spanish, German, and French COVID-19 datasets, we discover significant difference in the absolute change of entropy but highly regular trends for both the entropy evolution and the instantaneous reproductive ratio.

6.
Nature ; 574(7776): E1-E3, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578475
7.
Sci Rep ; 4: 4099, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24526224

RESUMEN

The hypothesis that earthquake foreshocks have a prognostic value is challenged by simulations of the normal behaviour of seismicity, where no distinction between foreshocks, mainshocks and aftershocks can be made. In the former view, foreshocks are passive tracers of a tectonic preparatory process that yields the mainshock (i.e., loading by aseismic slip) while in the latter, a foreshock is any earthquake that triggers a larger one. Although both processes can coexist, earthquake prediction is plausible in the first case while virtually impossible in the second. Here I present a meta-analysis of 37 foreshock studies published between 1982 and 2013 to show that the justification of one hypothesis or the other depends on the selected magnitude interval between minimum foreshock magnitude m(min) and mainshock magnitude M. From this literature survey, anomalous foreshocks are found to emerge when m(min) < M - 3.0. These results suggest that a deviation from the normal behaviour of seismicity may be observed only when microseismicity is considered. These results are to be taken with caution since the 37 studies do not all show the same level of reliability. These observations should nonetheless encourage new research in earthquake predictability with focus on the potential role of microseismicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA