Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chembiochem ; 25(6): e202300696, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38146865

RESUMEN

Pt(II) and Pd(II) coordinating N-donor ligands have been extensively studied as anticancer agents after the success of cisplatin. In this work, a novel bidentate N-donor ligand, the N-[[4-(phenylmethoxy)phenyl]methyl]-2-pyridinemethanamine, was designed to explore the antiparasitic, antiviral and antitumor activity of its Pt(II) and Pd(II) complexes. Chemical and spectroscopic characterization confirm the formation of [MLCl2 ] complexes, where M=Pt(II) and Pd(II). Single crystal X-ray diffraction confirmed a square-planar geometry for the Pd(II) complex. Spectroscopic characterization of the Pt(II) complex suggests a similar structure. 1 H NMR, 195 Pt NMR and HR-ESI-MS(+) analysis of DMSO solution of complexes indicated that both compounds exchange the chloride trans to the pyridine for a solvent molecule with different reaction rates. The ligand and the two complexes were tested for in vitro antitumoral, antileishmanial, and antiviral activity. The Pt(II) complex resulted in a GI50 of 10.5 µM against the NCI/ADR-RES (multidrug-resistant ovarian carcinoma) cell line. The ligand and the Pd(II) complex showed good anti-SARS-CoV-2 activity with around 65 % reduction in viral replication at a concentration of 50 µM.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Platino (Metal)/farmacología , Platino (Metal)/química , Ligandos , Cisplatino , Antineoplásicos/farmacología , Antineoplásicos/química , Antivirales/farmacología , Paladio/farmacología , Paladio/química , Cristalografía por Rayos X , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Línea Celular Tumoral
2.
Int J Biol Macromol ; 242(Pt 2): 124745, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150376

RESUMEN

Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.


Asunto(s)
Enfermedad de Chagas , Leishmaniasis , Malaria , Humanos , Venenos de Serpiente/química , Péptidos/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Leishmaniasis/tratamiento farmacológico
3.
Int J Antimicrob Agents ; 60(2): 106612, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35691601

RESUMEN

A growing number of studies have demonstrated the in vitro potential of an impressive number of antileishmanial candidates in the past years. However, the lack of uniformity regarding the choice of cell types for cytotoxicity assays may lead to uncomparable and inconclusive data. In vitro assays relying solely on non-phagocytic cell models may not represent a realistic result as the effect of an antileishmanial agent should ideally be presented based on its cytotoxicity profile against reticuloendothelial system cells. In the present review, we have assembled studies published in the scientific literature from 2015 to 2021 that explored leishmanicidal candidates, emphasising the main host cell models used for cytotoxicity assays. The pros and cons of different host cell types as well as primary cells and cell lines are discussed in order to draw attention to the need to establish standardised protocols for preclinical testing when assessing new antileishmanial candidates.


Asunto(s)
Antiprotozoarios , Antiprotozoarios/toxicidad , Línea Celular
4.
Front Cell Infect Microbiol ; 12: 824494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186797

RESUMEN

Although macrophages have long been considered key players in the course of Leishmania infections, other non-professional phagocytes have lately been shown to maintain low levels of the parasite in safe intracellular niches. Recently, it was demonstrated that the adipose tissue is capable of harboring Old World L. (L.) infantum in mice. However, there is no evidence of experimental adipocyte infection with New World Leishmania species so far. In addition, it was not known whether adipocytes would be permissive for formation of the unique, large and communal parasitophorous vacuoles that are typical of L. (L.) amazonensis in macrophages. Here we evaluated the ability of L. (L.) amazonensis and L. (V.) braziliensis promastigotes and amastigotes to infect 3T3-L1 fibroblast-derived adipocytes (3T3-Ad) using light and transmission electron microscopy. Our results indicate that amastigotes and promastigotes of both species were capable of infecting and surviving inside pre- and fully differentiated 3T3-Ad for up to 144 h. Importantly, L. (L.) amazonensis amastigotes resided in large communal parasitophorous vacuoles in pre-adipocytes, which appeared to be compressed between large lipid droplets in mature adipocytes. In parallel, individual L. (V.) braziliensis amastigotes were detected in single vacuoles 144 h post-infection. We conclude that 3T3-Ad may constitute an environment that supports low loads of viable parasites perhaps contributing to parasite maintenance, since amastigotes of both species recovered from these cells differentiated into replicative promastigotes. Our findings shed light on the potential of a new host cell model that can be relevant to the persistence of New World Leishmania species.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Leishmaniasis , Células 3T3-L1 , Adipocitos , Animales , Leishmaniasis/parasitología , Ratones , Ratones Endogámicos BALB C
5.
J Inorg Biochem ; 229: 111726, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35065320

RESUMEN

Leishmania amazonensis and L. braziliensis are the main etiological agents of the American Tegumentary Leishmaniasis (ATL). Taking into account the limited effectiveness and high toxicity of the current drug arsenal to treat ATL, novel options are urgently needed. Inspired by the fact that gold-based compounds are promising candidates for antileishmanial drugs, we studied the biological action of a systematic series of six (1)-(6) symmetric Au(I) benzyl and aryl-N-heterocyclic carbenes. All compounds were active at low micromolar concentrations with 50% effective concentrations ranging from 1.57 to 8.30 µM against Leishmania promastigotes. The mesityl derivative (3) proved to be the best candidate from this series, with a selectivity index ~13 against both species. The results suggest an effect of the steric and electronic parameters of the N-substituent in the activity. Intracellular infections were drastically reduced after 24h of (2)-(5) incubation in terms of infection rate and amastigote burden. Further investigations showed that our compounds induced significant parasites' morphological alterations and membrane permeability. Also, (3) and (6) were able to reduce the residual activity of three Leishmania recombinant cysteine proteases, known as possible targets for Au(I) complexes. Our promising results open the possibility of exploring gold complexes as leishmanicidal molecules to be further screened in in vivo models of infection.


Asunto(s)
Imidazoles/farmacología , Compuestos Orgánicos de Oro/farmacología , Tripanocidas/farmacología , Animales , Membrana Celular/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/farmacología , Femenino , Oro/química , Imidazoles/síntesis química , Leishmania braziliensis/efectos de los fármacos , Ratones Endogámicos BALB C , Estructura Molecular , Compuestos Orgánicos de Oro/síntesis química , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tripanocidas/síntesis química
6.
Bioorg Chem ; 114: 105041, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34130109

RESUMEN

Cationic peptides bio-inspired by natural toxins have been recognized as an efficient strategy for the treatment of different health problems. Due to the specific interaction with substrates from biological membranes, snake venom phospholipases (PLA2s) represent valuable scaffolds for the research and development of short peptides targeting parasites, bacteria, and cancer cells. Considering this, we evaluated the in vitro therapeutic potential of three biomimetic peptides (pCergo, pBmTxJ and pBmje) based on three different amino acid sequences from Asp49 PLA2s. First, short amino acid sequences (12-17 in length) derived from these membranolytic toxins were selected using a combination of bioinformatics tools, including AntiCP, AMPA, PepDraw, ToxinPred, and HemoPI. The peptide, from each polypeptide sequence, with the greatest average antimicrobial index, no toxicity, and no hemolysis predicted was synthesized, purified, and characterized. According to in vitro assays performed, pBmje showed moderate cytotoxicity specifically against MCF-7 (breast cancer cells) with an EC50 of 464.85 µM, whereas pBmTxJ showed an antimicrobial effect against Staphylococcus aureus (ATCC 25923) with an MIC of 37.5 µM, and pCergo against E. coli (ATCC 25922) with an MIC of 75 µM. In addition, pCergo showed antileishmanial activity with an EC50 of 93.69 µM and 110.40 µM against promastigotes of Leishmania braziliensis and L. amazonensis, respectively. Altogether, these results confirmed the versatility of PLA2-derived synthetic peptides, highlighting the relevance of the use of these membrane-interacting toxins as specific archetypes for drug design focused on public health problems.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Fragmentos de Péptidos/farmacología , Fosfolipasas A2/farmacología , Tripanocidas/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/toxicidad , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Biología Computacional , Escherichia coli/efectos de los fármacos , Femenino , Humanos , Leishmania/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/toxicidad , Fosfolipasas A2/síntesis química , Fosfolipasas A2/toxicidad , Staphylococcus aureus/efectos de los fármacos , Tripanocidas/síntesis química , Tripanocidas/toxicidad
7.
Trends Parasitol ; 37(8): 694-697, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34059455

RESUMEN

Here we highlight coinfections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with ectoparasites, helminths, and protozoa, described in the literature, and the urgent need to understand the conditions of these associated pathologies. We emphasize the notion that such information is crucial for the continuity of measures that have been used for decades to control neglected parasitic diseases.


Asunto(s)
COVID-19 , Coinfección , Enfermedades Parasitarias , Humanos , Enfermedades Desatendidas/prevención & control , Enfermedades Parasitarias/prevención & control , SARS-CoV-2
8.
ChemMedChem ; 16(11): 1681-1695, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33615725

RESUMEN

Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.


Asunto(s)
Antiprotozoarios/farmacología , Descubrimiento de Drogas , Glutatión/análogos & derivados , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Compuestos Orgánicos de Oro/farmacología , Espermidina/análogos & derivados , Animales , Antiprotozoarios/química , Glutatión/antagonistas & inhibidores , Glutatión/metabolismo , Humanos , Leishmania/metabolismo , Leishmaniasis/metabolismo , Compuestos Orgánicos de Oro/química , Oxidación-Reducción , Pruebas de Sensibilidad Parasitaria , Espermidina/antagonistas & inhibidores , Espermidina/metabolismo
9.
Parasitol Res ; 120(2): 705-713, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33415404

RESUMEN

Leishmaniasis is one of the most neglected parasitic infections of the world and current therapeutic options show several limitations. In the search for more effective drugs, plant compounds represent a powerful natural source. Artemisinin is a sesquiterpene lactone extracted from Artemisia annua L. leaves, from which dihydroartemisinin (DQHS) and artesunic acid (AA)/artesunate are examples of active derivatives. These lactones have been applied successfully on malaria therapy for decades. Herein, we investigated the sensitivity of Leishmania braziliensis, one of the most prevalent Leishmania species that cause cutaneous manifestations in the New World, to artemisinin, DQHS, and AA. L. braziliensis promastigotes and the stage that is targeted for therapy, intracelular amastigotes, were more sensitive to DQHS, showing EC50 of 62.3 ± 1.8 and 8.9 ± 0.9 µM, respectively. Cytotoxicity assays showed that 50% of bone marrow-derived macrophages cultures were inhibited with 292.8 ± 3.8 µM of artemisinin, 236.2 ± 4.0 µM of DQHS, and 396.8 ± 6.7 µM of AA. The control of intracellular infection may not be essentially attributed to the production of nitric oxide. However, direct effects on mitochondrial bioenergetics and H2O2 production appear to be associated with the leishmanicidal effect of DQHS. Our data provide support for further studies of artemisinin and derivatives repositioning for experimental leishmaniasis.


Asunto(s)
Antiprotozoarios/farmacología , Artemisininas/farmacología , Leishmania braziliensis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Metabolismo Energético/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Leishmania braziliensis/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Mitocondrias/metabolismo , Succinatos/farmacología
10.
Acta Trop ; 215: 105803, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33373585

RESUMEN

Chagas disease is a neglected tropical disease strongly associated with low socioeconomic status, affecting nearly 8 million people - mainly Latin Americans. The current infection risk is based on acute case reports, most of which are typically associated with oral transmissions. In the semi-arid region of Northeastern Brazil, serious outbreaks of this transmission type have surged in the last years. One of those occurred in 2016 in the state of Rio Grande do Norte. Rural residents of four municipalities surrounding Marcelino Vieira ingested sugar cane juice - which was probably ground with Trypanosoma cruzi-infected insects. Eighteen cases of Chagas disease were confirmed serologically, with two deaths reported. Socioeconomic information, schooling of residents and the structure of peridomestic and domestic environments in the rural area of Marcelino Vieira, along with entomological indicators, were investigated to understand better the factors related to the outbreaks in this region. We found triatomines (mainly Triatoma brasiliensis) in 35% (24/67) of domiciliary units and all rocky outcrops inspected (n = 7). Overall, 25% (91/357) of examined T. brasiliensis were infected by T. cruzi in artificial ecotopes, with almost the same prevalence in the sylvatic environment (22%; 35/154). Among all ecotopes investigated, wood/tile/brick piles were the ones linked to high insect infestations and triatomine T. cruzi infection prevalence. Ninety-five percent of people interviewed recognized the triatomines and knew the classic route of transmission of disease - triatomine bite-dependent. However, only 7.5% admitted knowledge that Chagas disease can also be acquired orally - which poses a risk this transmission route currently recognized. Here, we highlight the physical proximity between humans and triatomine populations with high T. cruzi infection prevalence as an additional risk factor to oral/vector contaminations. In sum, residents have low income, low level of education, and/or a willful disregard for the routes of Chagas disease transmission (specifically oral transmission), a combination of factors that may have favored the Chagas disease outbreak. We here provide recommendations to avoid further outbreaks.


Asunto(s)
Enfermedad de Chagas/transmisión , Brotes de Enfermedades , Animales , Brasil/epidemiología , Enfermedad de Chagas/epidemiología , Entomología , Humanos , Insectos Vectores , Prevalencia , Factores de Riesgo , Factores Socioeconómicos
11.
Pathog Dis ; 78(6)2020 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-32926094

RESUMEN

Screenings of natural products have significantly contributed to the discovery of novel leishmanicidal agents. In this study, three known cruzioseptins-antibacterial peptides from Cruziohyla calcarifer skin-were synthesized and evaluated against promastigotes and amastigotes stages of Leishmania (L.) amazonensis and L. (V.) braziliensis. EC50 ranged from 9.17 to 74.82 µM, being cruzioseptin-1 the most active and selective compound, with selectivity index > 10 for both promastigotes and amastigotes of L. (V.) braziliensis. In vitro infections incubated with cruzioseptins at 50 µM showed up to ∼86% reduction in the amastigote number. Cruzioseptins were able to destabilize the parasite's cell membrane, allowing the incorporation of a DNA-fluorescent dye. Our data also demonstrated that hydrophobicity and charge appear to be advantageous features for enhancing parasiticidal activity. Antimicrobial cruzioseptins are suitable candidates and alternative molecules that deserve further in vivo investigation focusing on the development of novel antileishmanial therapies.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Leishmania/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Anfibios/metabolismo , Animales , Humanos , Leishmaniasis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Piel/metabolismo
12.
ChemMedChem ; 15(22): 2146-2150, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-32830445

RESUMEN

A series of mononuclear coordination or organometallic AuI /AuIII complexes (1-9) have been comparatively studied in vitro for their antileishmanial activity against promastigotes and amastigotes, the clinically relevant parasite form, of Leishmania amazonensis and Leishmania braziliensis. One of the cationic AuI bis-N-heterocyclic carbenes (3) has low EC50 values (ca. 4 µM) in promastigotes cells and no toxicity in host macrophages. Together with two other AuIII complexes (6 and 7), the compound is also extremely effective in intracellular amastigotes from L. amazonensis. Initial mechanistic studies include an evaluation of the gold complexes' effect on L. amazonensis' plasma membrane integrity.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Compuestos Orgánicos de Oro/farmacología , Animales , Antiprotozoarios/química , Células Cultivadas , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Compuestos Orgánicos de Oro/química , Pruebas de Sensibilidad Parasitaria
13.
J Nat Prod ; 83(1): 55-65, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31895573

RESUMEN

A new method of screening was developed to generate 770 organic and water-soluble fractions from extracts of nine species of marine sponges, from the growth media of 18 species of marine-derived fungi, and from the growth media of 13 species of endophytic fungi. The screening results indicated that water-soluble fractions displayed significant bioactivity in cytotoxic, antibiotic, anti-Leishmania, anti-Trypanosoma cruzi, and inhibition of proteasome assays. Purification of water-soluble fractions from the growth medium of Penicillium solitum IS1-A provided the new glutamic acid derivatives solitumine A (1), solitumine B (2), and solitumidines A-D (3-6). The structures of compounds 1-6 have been established by analysis of spectroscopic data, chemical derivatizations, and vibrational circular dichroism calculations. Although no biological activity could be observed for compounds 1-6, the new structures reported for 1-6 indicate that the investigation of water-soluble natural products represents a relevant strategy in finding new secondary metabolites.


Asunto(s)
Glutamatos/química , Regiones Antárticas , Hongos/química , Estructura Molecular , Penicillium/química , Agua
14.
Artículo en Inglés | MEDLINE | ID: mdl-31454702

RESUMEN

Phospholipase A2 toxins present in snake venoms interact with biological membranes and serve as structural models for the design of small peptides with anticancer, antibacterial and antiparasitic properties. Oligoarginine peptides are capable of increasing cell membrane permeability (cell penetrating peptides), and for this reason are interesting delivery systems for compounds of pharmacological interest. Inspired by these two families of bioactive molecules, we have synthesized two 13-mer peptides as potential antileishmanial leads gaining insights into structural features useful for the future design of more potent peptides. The peptides included p-Acl, reproducing a natural segment of a Lys49 PLA2 from Agkistrodon contortrix laticinctus snake venom, and its p-AclR7 analogue where all seven lysine residues were replaced by arginines. Both peptides were active against promastigote and amastigote forms of Leishmania (L.) amazonensis and L. (L.) infantum, while displaying low cytotoxicity for primary murine macrophages. Spectrofluorimetric studies suggest that permeabilization of the parasite's cell membrane is the probable mechanism of action of these biomolecules. Relevantly, the engineered peptide p-AclR7 was more active in both life stages of Leishmania and induced higher rates of ethidium bromide incorporation than its native template p-Acl. Taken together, the results suggest that short peptides based on phospholipase toxins are potential scaffolds for development of antileishmanial candidates. Moreover, specific amino acid substitutions, such those herein employed, may enhance the antiparasitic action of these cationic peptides, encouraging their future biomedical applications.


Asunto(s)
Venenos de Crotálidos/farmacología , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Péptidos/farmacología , Fosfolipasas A2/farmacología , Agkistrodon/metabolismo , Animales , Células Cultivadas , Venenos de Crotálidos/síntesis química , Macrófagos/citología , Ratones , Ratones Endogámicos BALB C , Péptidos/síntesis química
15.
Comput Struct Biotechnol J ; 17: 352-361, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949306

RESUMEN

Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania (NTD) endemic in 98 countries. Although some drugs are available, current treatments deal with issues such as toxicity, low efficacy, and emergence of resistance. Therefore, there is an urgent need to identify new targets for the development of new antileishmanial drugs. Protein kinases (PKs), which play an essential role in many biological processes, have become potential drug targets for many parasitic diseases. A refined bioinformatics pipeline was applied in order to define and compare the kinomes of L. infantum and L. braziliensis, species that cause cutaneous and visceral manifestations of leishmaniasis in the Americas, the latter being potentially fatal if untreated. Respectively, 224 and 221 PKs were identified in L. infantum and L. braziliensis overall. Almost all unclassified eukaryotic PKs were assigned to six of nine major kinase groups and, consequently, most have been classified into family and subfamily. Furthermore, revealing the kinomes for both Leishmania species allowed for the prioritization of potential drug targets that could be explored for discovering new drugs against leishmaniasis. Finally, we used a drug repurposing approach and prioritized seven approved drugs and investigational compounds to be experimentally tested against Leishmania. Trametinib and NMS-1286937 inhibited the growth of L. infantum and L. braziliensis promastigotes and amastigotes and therefore might be good candidates for the drug repurposing pipeline.

16.
Parasitol Res ; 118(5): 1685-1686, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30903346

RESUMEN

The original published version of this article contains error in Tables 1 and 2. Correct tables are presented here.

17.
Parasitol Res ; 118(5): 1625-1631, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30798369

RESUMEN

Schistosomiasis is a neglected tropical disease affecting 220 million people worldwide. Praziquantel has proven to be effective against this parasitic disease, though there are increasing concerns regarding tolerance/resistance that calls for new drugs. Repurposing already existing and well-known drugs has been a desirable approach since it reduces time, costs, and ethical concerns. The anti-cancer drug tamoxifen (TAM) has been used worldwide for several decades to treat and prevent breast cancer. Previous reports stated that TAM affects Schistosoma hormonal physiology; however, no controlled schistosomicidal in vivo assays have been conducted. In this work, we evaluated the effect of TAM on female and male Schistosoma mansoni morphology, motility, and egg production. We further assessed worm survival and egg production in S. mansoni-infected mice. TAM induced morphological alterations in male and female parasites, as well as in eggs in vitro. Furthermore, in our in vivo experiments, one single dose of intraperitoneal TAM citrate reduced the total worm burden by 73% and led to a decrease in the amount of eggs in feces and low percentages of immature eggs in the small intestine wall. Eggs obtained from TAM citrate-treated mice were reduced in size and presented hyper-vacuolated structures. Our results suggest that TAM may be repurposed as a therapeutic alternative against S. mansoni infections.


Asunto(s)
Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomicidas/uso terapéutico , Tamoxifeno/uso terapéutico , Animales , Modelos Animales de Enfermedad , Resistencia a Medicamentos/fisiología , Heces/parasitología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Praziquantel/uso terapéutico , Esquistosomiasis mansoni/parasitología
18.
Anticancer Agents Med Chem ; 19(3): 389-401, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30417795

RESUMEN

BACKGROUND: BRN2 transcription factor is associated with the development of malignant melanoma. The cytotoxic activities and cell death mechanism against B16F10-Nex2 cells were determined with synthetic peptide R18H derived from the POU domain of the BRN2 transcription factor. OBJECTIVE: To determine the cell death mechanisms and in vivo activity of peptide R18H derived from the POU domain of the BRN2 transcription factor against B16F10-Nex2 cells. METHODS: Cell viability was determined by the MTT method. C57Bl/6 mice were challenged with B16F10-Nex2 cells and treated with R18H. To identify the type of cell death, we used TUNEL assay, Annexin V and PI, Hoechst, DHE, and determination of caspase activation and cytochrome c release. Transmission electron microscopy was performed to verify morphological alterations after peptide treatment. RESULTS: Peptide R18H displayed antitumor activity in the first hours of treatment and the EC50% was calculated for 2 and 24h, being 0.76 ± 0.045 mM and 0.559 ± 0.053 mM, respectively. After 24h apoptosis was evident, based on DNA degradation, chromatin condensation, increase of superoxide anion production, phosphatidylserine translocation, activation of caspases 3 and 8, and release of extracellular cytochrome c in B16F10-Nex2 cells. The peptide cytotoxic activity was not affected by necroptosis inhibitors and treated cells did not release LDH in the extracellular medium. Moreover, in vivo antitumor activity was observed following treatment with peptide R18H. CONCLUSION: Peptide R18H from BRN2 transcription factor induced apoptosis in B16F10-Nex2 and displayed antitumor activity in vivo.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas de Homeodominio/química , Melanoma/tratamiento farmacológico , Melanoma/patología , Factores del Dominio POU/química , Péptidos/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Relación Estructura-Actividad
19.
Int J Parasitol Drugs Drug Resist ; 8(3): 475-487, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30399513

RESUMEN

Previous work from our group showed that tamoxifen, an oral drug that has been in use for the treatment of breast cancer for over 40 years, is active both in vitro and in vivo against several species of Leishmania, the etiological agent of leishmaniasis. Using a combination of metabolic labeling with [3H]-sphingosine and myo-[3H]-inositol, alkaline hydrolysis, HPTLC fractionations and mass spectrometry analyses, we observed a perturbation in the metabolism of inositolphosphorylceramides (IPCs) and phosphatidylinositols (PIs) after treatment of L. amazonensis promastigotes with tamoxifen, with a significant reduction in the biosynthesis of the major IPCs (composed of d16:1/18:0-IPC, t16:0/C18:0-IPC, d18:1/18:0-IPC and t16:0/20:0-IPC) and PIs (sn-1-O-(C18:0)alkyl -2-O-(C18:1)acylglycerol-3-HPO4-inositol and sn-1-O-(C18:0)acyl-2-O-(C18:1)acylglycerol-3-HPO4-inositol) species. Substrate saturation kinetics of myo-inositol uptake analyses indicated that inhibition of inositol transport or availability were not the main reasons for the reduced biosynthesis of IPC and PI observed in tamoxifen treated parasites. An in vitro enzymatic assay was used to show that tamoxifen was able to inhibit the Leishmania IPC synthase with an IC50 value of 8.48 µM (95% CI 7.68-9.37), suggesting that this enzyme is most likely one of the targets for this compound in the parasites.


Asunto(s)
Vías Biosintéticas/efectos de los fármacos , Glicoesfingolípidos/biosíntesis , Leishmania/efectos de los fármacos , Tamoxifeno/farmacología , Glicoesfingolípidos/metabolismo , Hexosiltransferasas/efectos de los fármacos , Hexosiltransferasas/metabolismo , Concentración 50 Inhibidora , Inositol/metabolismo , Leishmania/fisiología , Leishmania mexicana/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Fosfatidilinositoles/metabolismo
20.
Int J Parasitol Drugs Drug Resist ; 8(3): 430-439, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30293058

RESUMEN

Tritryps diseases are devastating parasitic neglected infections caused by Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei subspecies. Together, these parasites affect more than 30 million people worldwide and cause high mortality and morbidity. Leishmaniasis comprises a complex group of diseases with clinical manifestation ranging from cutaneous lesions to systemic visceral damage. Antimonials, the first-choice drugs used to treat leishmaniasis, lead to high toxicity and carry significant contraindications limiting its use. Drug-resistant parasite strains are also a matter for increasing concern, especially in areas with very limited resources. The current scenario calls for novel and/or improvement of existing therapeutics as key research priorities in the field. Although several studies have shown advances in drug discovery towards leishmaniasis in recent years, key knowledge gaps in drug discovery pipelines still need to be addressed. In this review we discuss not only scientific and non-scientific bottlenecks in drug development, but also the central role of public-private partnerships for a successful campaign for novel treatment options against this devastating disease.


Asunto(s)
Descubrimiento de Drogas/métodos , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Animales , Antiprotozoarios/efectos adversos , Antiprotozoarios/uso terapéutico , Antiprotozoarios/toxicidad , Enfermedad de Chagas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/estadística & datos numéricos , Descubrimiento de Drogas/legislación & jurisprudencia , Descubrimiento de Drogas/estadística & datos numéricos , Descubrimiento de Drogas/tendencias , Humanos , Enfermedades Desatendidas/tratamiento farmacológico , Enfermedades Desatendidas/parasitología , Asociación entre el Sector Público-Privado , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Trypanosomatina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA