Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Comp Physiol B ; 194(1): 65-79, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219236

RESUMEN

During the hibernation season, Arctic ground squirrels (AGS) experience extreme temperature fluctuations (body temperature, Tb, as low as - 3 °C), during which they are mostly physically inactive. Once Tb reaches ~ 15 °C during interbout arousals, hibernators recruit skeletal muscle (SkM) for shivering thermogenesis to reach Tb of ~ 35 °C. Polyunsaturated fatty acids (PUFA) in the diet are known to influence SkM function and metabolism. Recent studies in the cardiac muscle of hibernators have revealed that increased levels of ω-6 and the ω-6:ω-3 PUFA ratio correlate with sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and hibernation status. We hypothesized that diet (increased ω-6:ω-3 PUFA ratio) and torpor status are important in the regulation of the SERCA pump and that this may improve SkM performance during hibernation. Ex vivo functional assays were used to characterize performance changes in SkM (diaphragm) from AGS fed the following diets. (1) Standard rodent chow with an ω-6:ω-3 ratio of 5:1, or (2) a balanced diet with an ω-6:ω-3 ratio of 1:1 that roughly mimics wild diet. We collected diaphragms at three different stages of hibernation (early torpor, late torpor, and arousal) and evaluated muscle function under hypothermic temperature stress at 4 °C, 15 °C, 25 °C, and 37 °C to determine functional resilience. Our data show that torpid animals fed standard rodent chow have faster SkM relaxation when compared to the balanced diet animals. Furthermore, we discovered that standard rodent chow AGS during torpor has higher SkM relaxation kinetics, but this effect of torpor is eliminated in balanced diet AGS. Interestingly, neither diet nor torpor influenced the rate of force development (rate of calcium release). This is the first study to show that increasing the dietary ω-6:ω-3 PUFA ratio improves skeletal muscle performance during decreased temperatures in a hibernating animal. This evidence supports the interpretation that diet can change some functional properties of the SkM, presumably through membrane lipid composition, ambient temperature, and torpor interaction, with an impact on SkM performance.


Asunto(s)
Músculo Esquelético , Sciuridae , Animales , Temperatura , Sciuridae/fisiología , Dieta/veterinaria , Relajación Muscular
2.
J Comp Physiol B ; 192(3-4): 529-540, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35503574

RESUMEN

Omega 3 polyunsaturated fatty acids (PUFAs) are well-documented for their influence on health and weight loss. Recent studies indicate omega 3 PUFAs may exert a negative impact on cellular stress and physiology in some hibernators. We asked if physiological stress indicators, lipid peroxidation and mass gain in Arctic Ground Squirrels (AGS) were negatively influenced by naturally occurring dietary omega 3 PUFA levels compared to omega 3 PUFA levels found in common laboratory diets. We found plasma fatty acid profiles of free-ranging AGS to be high in omega 3 PUFAs with balanced omega 6:3 ratios, while standard laboratory diets and plasma of captive AGS are high in omega 6 and low in omega 3 PUFAs with higher omega 6:3 ratios. Subsequently, we designed a diet to mimick free-range AGS omega 6:3 ratios in captive AGS. Groups of wild-caught juvenile AGS were either fed: (1) Mazuri Rodent Chow (Standard Rodent chow, 4.95 omega 6:3 ratio), or (2) balanced omega 6:3 chow (Balanced Diet, 1.38 omega 6:3). AGS fed the Balanced Diet had plasma omega 6:3 ratios that mimicked plasma profiles of wild AGS. Balanced Diet increased female body mass before hibernation, but did not influence levels of cortisol in plasma or levels of the lipid peroxidation product 4-HNE in brown adipose tissue. Overall, as the mass gain is critical during pre-hibernation for obligate hibernators, the results show that mimicking a fatty acid profile of wild AGS facilitates sex-dependent mass accumulation without increasing stress indicators.


Asunto(s)
Ácidos Grasos Omega-3 , Ácidos Grasos Omega-6 , Animales , Ácidos Grasos , Ácidos Grasos Insaturados , Femenino , Sciuridae/fisiología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA