RESUMEN
Lichenicolous fungi are a heterogeneous group of organisms that grow exclusively on lichens, forming obligate associations with them. It has often been assumed that cospeciation has occurred between lichens and lichenicolous fungi, but this has been seldom analysed from a macroevolutionary perspective. Many lichenicolous species are rare or are rarely observed, which results in frequent and large gaps in the knowledge of the diversity of many groups. This, in turn, hampers evolutionary studies that necessarily are based on a reasonable knowledge of this diversity. Tremella caloplacae is a heterobasidiomycete growing on various hosts from the lichen-forming family Teloschistaceae, and evidence suggests that it may represent a species complex. We combine an exhaustive sampling with molecular and ecological data to study species delimitation, cophylogenetic events and temporal concordance of this association. Tremella caloplacae is here shown to include at least six distinct host-specific lineages (=putative species). Host switch is the dominant and most plausible event influencing diversification and explaining the coupled evolutionary history in this system, although cospeciation cannot be discarded. Speciation in T. caloplacae would therefore have occurred coinciding with the rapid diversification - by an adaptive radiation starting in the late Cretaceous - of their hosts. New species in T. caloplacae would have developed as a result of specialization on diversifying lichen hosts that suddenly offered abundant new ecological niches to explore or adapt to.
Asunto(s)
Ascomicetos , Basidiomycota , Líquenes , Filogenia , Evolución Biológica , Ascomicetos/genética , Líquenes/genéticaRESUMEN
Lichens are well-known examples of complex symbiotic associations between organisms from different Kingdoms. Microfungi in particular, establish diverse associations with the hosting lichen thallus, as species-specific parasites or transient co-inhabitants. The whole community of lichen-associated fungi constitute the 'lichen mycobiome' comprising both ascomycetes and basidiomycetes, including filamentous and yeast taxa. Metabarcoding results and microscopy analyses show that in some thalli, basidiomycetes are frequent lichen-associated fungi but still only a few species could be axenically isolated and morphologically characterized. Within a broad project aiming at characterizing the mycobiome diversity by culture-dependent and independent approaches in two lichen species selected as reference models - Rhizoplaca melanophthalma and Tephromela atra, we succeed in isolating and culturing 76 new strains of basidiomycetous yeasts. The lichen thalli were collected in different mountain regions worldwide and at relatively high elevation. The yeast strains were isolated on different growth media and were studied for their morphological and genetic diversity. Nuclear internal transcribed spacer (ITS) and ribosomal large subunit (LSU) sequence analyses identified them to belong to ten families within the orders Agaricostilbomycetes, Cystobasidiomycetes, Microbotryomycetes, Tremellomycetes and Ustilaginomycetes. The yeasts here detected showed patterns of host-preference in a few cases and they are potentially related to the ecological conditions.
Asunto(s)
Ascomicetos , Basidiomycota , Líquenes , Ascomicetos/genética , Basidiomycota/genética , Humanos , Líquenes/microbiología , Filogenia , SimbiosisRESUMEN
Pucciniomycotina is a highly diverse group of fungi, showing a remarkably wide range of lifestyles and ecologies. However, lichen-inhabiting fungi are only represented by a few species included in the genera Chionosphaera and Cystobasidium, and their phylogenetic position has never been investigated. Phylogenetic analyses using the nuclear SSU, ITS, and LSU ribosomal DNA markers reveal that the lichenicolous members of Cystobasidium (C. hypogymniicola, C. usneicola) form a monophyletic group distinct from Cystobasidium and outside the Cystobasidiales. The new genus Cyphobasidium is consequently described to accommodate these lichen-inhabiting species. Cyphobasidium is characterized by producing conspicuous galls on the host lichen thalli, by having distinctive basidia that arise from a thick-walled, cup-like structure, the probasidium, that persists after the senescence of the actual basidium (meiosporangium), and by its lichenicolous occurrence on species of Hypogymnia and Usnea. Cyphobasidium is one of the few representatives of the Cystobasidiomycetes in which the sexual stage predominates in nature, whereas most species in the group are known only from an asexual yeast phase. This is the first time the position of lichen-inhabiting taxa within the Pucciniomycotina is investigated using molecular data.
Asunto(s)
Basidiomycota/aislamiento & purificación , Líquenes/microbiología , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/crecimiento & desarrollo , ADN de Hongos/genética , ADN Ribosómico/genética , FilogeniaRESUMEN
Fungal mycoparasitism-fungi parasitizing other fungi-is a common lifestyle in some basal lineages of the basidiomycetes, particularly within the Tremellales. Relatively nonaggressive mycoparasitic fungi of this group are in general highly host specific, suggesting cospeciation as a plausible speciation mode in these associations. Species delimitation in the Tremellales is often challenging because morphological characters are scant. Host specificity is therefore a great aid to discriminate between species but appropriate species delimitation methods that account for actual diversity are needed to identify both specialist and generalist taxa and avoid inflating or underestimating diversity. We use the Biatoropsis-Usnea system to study factors inducing parasite diversification. We employ morphological, ecological, and molecular data-methods including genealogical concordance phylogenetic species recognition (GCPSR) and the general mixed Yule-coalescent (GMYC) model-to assess the diversity of fungi currently assigned to Biatoropsis usnearum. The degree of cospeciation in this association is assessed with two cophylogeny analysis tools (ParaFit and Jane 4.0). Biatoropsis constitutes a species complex formed by at least seven different independent lineages and host switching is a prominent force driving speciation, particularly in host specialists. Combining ITS and nLSU is recommended as barcode system in tremellalean fungi.
Asunto(s)
Basidiomycota/genética , Evolución Molecular , Especificidad del Huésped , Filogenia , Polimorfismo Genético , Usnea/genética , Basidiomycota/clasificación , Basidiomycota/fisiología , Genes Fúngicos , Usnea/clasificación , Usnea/fisiologíaRESUMEN
The Tremellomycetes (Agaricomycotina, Basidiomycota, Fungi) are a nutritionally heterogeneous group comprising saprotrophs, animal parasites, and fungicolous species (fungal-inhabiting, including lichen-inhabiting). The relationships of many species, particularly those with a lichenicolous habit, have never been investigated by molecular methods. We present a phylogeny of the Tremellomycetes based on three nuclear DNA ribosomal markers (nSSU, 5.8S and nLSU), representing all main taxonomic groups and life forms, including lichenicolous taxa. The Cystofilobasidiales, Filobasidiales, Holtermanniales, and Tremellales (including the Trichosporonales) are recovered as monophyletic, but this is not the case for the Tremellomycetes. We suggest, however, that the Cystofilobasidiales tentatively continue to be included in the Tremellomycetes. As currently circumscribed, the Filobasidiaceae, Sirobasidiaceae, Syzygosporaceae and Tremellaceae are non-monophyletic. Cuniculitremaceae, Sirobasidiaceae and Tetragoniomycetaceae are nested within Tremellaceae. The lichenicolous species currently included within the Tremellomycetes belong in this group, distributed across the Filobasidiales and Tremellales. Lichen-inhabiting taxa do not form a monophyletic group; they are distributed in several clades and sometimes intermixed with taxa of other nutritional habits. Character state reconstruction indicates that two morphological traits claimed to characterize groups in the Tremellomycetes (the basidium habit and basidium septation) are highly homoplastic. Comparative phylogenetic methods suggest that the transitions between single and catenulate basidia in the Tremellales are consistent with a punctuational model of evolution whereas basidium septation is likely to have evolved under a graduational model in the clade comprising the Holtermanniales, Filobasidiales, and Tremellales.
Asunto(s)
Basidiomycota/clasificación , Basidiomycota/genética , Evolución Biológica , ADN de Hongos/genética , ADN Ribosómico/genética , Secuencia de Bases , Basidiomycota/citología , Cartilla de ADN , Evolución Molecular , Variación Genética , Datos de Secuencia Molecular , Fenotipo , Filogenia , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
The phylogenetic placement of the monotypic dematiaceous hyphomycete genus Xanthoriicola was investigated. Sequences of the nLSU region were obtained from 11 specimens of X. physciae, which formed a single clade supported both by parsimony (91 %), and maximum likelihood (100 %) bootstraps, and Bayesian Posterior Probabilities (1.0). The closest relatives in the parsimony analysis were species of Piedraria, while in the Bayesian analysis they were those of Friedmanniomyces. These three genera, along with species of Elasticomyces, Recurvomyces, Teratosphaeria, and sequences from unnamed rock-inhabiting fungi (RIF), were all members of the same major clade within Capnodiales with strong support in both analyses, and for which the family name Teratosphaeriaceae can be used pending further studies on additional taxa.