Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genetics ; 222(3)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094352

RESUMEN

The reduction of genetic diversity due to genetic hitchhiking is widely used to find past selective sweeps from sequencing data, but very little is known about how spatial structure affects hitchhiking. We use mathematical modeling and simulations to find the unfolded site frequency spectrum left by hitchhiking in the genomic region of a sweep in a population occupying a 1D range. For such populations, sweeps spread as Fisher waves, rather than logistically. We find that this leaves a characteristic 3-part site frequency spectrum at loci very close to the swept locus. Very low frequencies are dominated by recent mutations that occurred after the sweep and are unaffected by hitchhiking. At moderately low frequencies, there is a transition zone primarily composed of alleles that briefly "surfed" on the wave of the sweep before falling out of the wavefront, leaving a spectrum close to that expected in well-mixed populations. However, for moderate-to-high frequencies, there is a distinctive scaling regime of the site frequency spectrum produced by alleles that drifted to fixation in the wavefront and then were carried throughout the population. For loci slightly farther away from the swept locus on the genome, recombination is much more effective at restoring diversity in 1D populations than it is in well-mixed ones. We find that these signatures of space can be strong even in apparently well-mixed populations with negligible spatial genetic differentiation, suggesting that spatial structure may frequently distort the signatures of hitchhiking in natural populations.


Asunto(s)
Modelos Genéticos , Selección Genética , Alelos , Mutación
2.
Rep Prog Phys ; 84(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34825896

RESUMEN

The observation that phenotypic variability is ubiquitous in isogenic populations has led to a multitude of experimental and theoretical studies seeking to probe the causes and consequences of this variability. Whether it be in the context of antibiotic treatments or exponential growth in constant environments, non-genetic variability has significant effects on population dynamics. Here, we review research that elucidates the relationship between cell-to-cell variability and population dynamics. After summarizing the relevant experimental observations, we discuss models of bet-hedging and phenotypic switching. In the context of these models, we discuss how switching between phenotypes at the single-cell level can help populations survive in uncertain environments. Next, we review more fine-grained models of phenotypic variability where the relationship between single-cell growth rates, generation times and cell sizes is explicitly considered. Variability in these traits can have significant effects on the population dynamics, even in a constant environment. We show how these effects can be highly sensitive to the underlying model assumptions. We close by discussing a number of open questions, such as how environmental and intrinsic variability interact and what the role of non-genetic variability in evolutionary dynamics is.


Asunto(s)
Ambiente , Selección Genética , Evolución Biológica , Fenotipo , Dinámica Poblacional
3.
PLoS Comput Biol ; 17(6): e1009080, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34153030

RESUMEN

Microbial populations show striking diversity in cell growth morphology and lifecycle; however, our understanding of how these factors influence the growth rate of cell populations remains limited. We use theory and simulations to predict the impact of asymmetric cell division, cell size regulation and single-cell stochasticity on the population growth rate. Our model predicts that coarse-grained noise in the single-cell growth rate λ decreases the population growth rate, as previously seen for symmetrically dividing cells. However, for a given noise in λ we find that dividing asymmetrically can enhance the population growth rate for cells with strong size control (between a "sizer" and an "adder"). To reconcile this finding with the abundance of symmetrically dividing organisms in nature, we propose that additional constraints on cell growth and division must be present which are not included in our model, and we explore the effects of selected extensions thereof. Further, we find that within our model, epigenetically inherited generation times may arise due to size control in asymmetrically dividing cells, providing a possible explanation for recent experimental observations in budding yeast. Taken together, our findings provide insight into the complex effects generated by non-canonical growth morphologies.


Asunto(s)
División Celular Asimétrica/fisiología , Modelos Biológicos , Biología Computacional , Simulación por Computador , Fenómenos Microbiológicos , Saccharomycetales/citología , Saccharomycetales/fisiología , Procesos Estocásticos
4.
Elife ; 102021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33464204

RESUMEN

Laboratory experimental evolution provides a window into the details of the evolutionary process. To investigate the consequences of long-term adaptation, we evolved 205 Saccharomyces cerevisiae populations (124 haploid and 81 diploid) for ~10,000,000 generations in three environments. We measured the dynamics of fitness changes over time, finding repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term evolution in E. coli, we do not observe long-term coexistence or populations with highly elevated mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish aspects of evolutionary dynamics that are likely to be general features of adaptation across many systems from those that are specific to individual organisms and environmental conditions.


Asunto(s)
Adaptación Biológica , Evolución Molecular , Mutación , Fenotipo , Saccharomyces cerevisiae/fisiología , Diploidia , Tasa de Mutación , Saccharomyces cerevisiae/genética
5.
Elife ; 92020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33275097

RESUMEN

In biological contexts as diverse as development, apoptosis, and synthetic microbial consortia, collections of cells or subcellular components have been shown to overcome the slow signaling speed of simple diffusion by utilizing diffusive relays, in which the presence of one type of diffusible signaling molecule triggers participation in the emission of the same type of molecule. This collective effect gives rise to fast-traveling diffusive waves. Here, in the context of cell signaling, we show that system dimensionality - the shape of the extracellular medium and the distribution of cells within it - can dramatically affect the wave dynamics, but that these dynamics are insensitive to details of cellular activation. As an example, we show that neutrophil swarming experiments exhibit dynamical signatures consistent with the proposed signaling motif. We further show that cell signaling relays generate much steeper concentration profiles than does simple diffusion, which may facilitate neutrophil chemotaxis.


Asunto(s)
Comunicación Celular/fisiología , Modelos Biológicos , Modelos Teóricos , Transducción de Señal/fisiología , Animales , Humanos
6.
Phys Rev Lett ; 122(6): 068101, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822081

RESUMEN

Asymmetric segregation of key proteins at cell division-be it a beneficial or deleterious protein-is ubiquitous in unicellular organisms and often considered as an evolved trait to increase fitness in a stressed environment. Here, we provide a general framework to describe the evolutionary origin of this asymmetric segregation. We compute the population fitness as a function of the protein segregation asymmetry a, and show that the value of a which optimizes the population growth manifests a phase transition between symmetric and asymmetric partitioning phases. Surprisingly, the nature of phase transition is different for the case of beneficial proteins as opposed to deleterious proteins: a smooth (second order) transition from purely symmetric to asymmetric segregation is found in the former, while a sharp transition occurs in the latter. Our study elucidates the optimization problem faced by evolution in the context of protein segregation, and motivates further investigation of asymmetric protein segregation in biological systems.


Asunto(s)
Modelos Biológicos , Proteínas/metabolismo , Estrés Fisiológico/fisiología , División Celular/fisiología , Evolución Molecular
7.
Mycobiology ; 38(1): 39-45, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23956623

RESUMEN

White rot, which is caused by Sclerotium cepivorum, is a lethal disease affecting green onions. Three different types of nano-silver liquid (WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R) were tested in several different concentrations on three types of media to assess their antifungal activities. Results from in vitro experiments showed that all three of the nano-silver liquids had more than 90% inhibition rates at a concentration of 7 ppm. Greenhouse experiments revealed that all of the nano-silver liquids increased biomass and dry weights, and there were minimal changes in the population of various bacteria and fungi from the soil of greenhouse-cultivated green onions. In addition, a soil chemical analysis showed that there were minimal changes in soil composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA