Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 535: 255-264, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312951

RESUMEN

A novel iron-doped chitosan electrospun nanofiber mat (Fe@CTS ENM) was synthesized, which was proven to be effective for the removal of arsenite (As(III)) from water at neutral pH condition. The physiochemical properties and adsorption mechanism were explored by SEM-EDS and X-ray photoelectron spectroscopy (XPS). Batch adsorption experiments were carried out to evaluate the As(III) adsorption performance of the Fe@CTS ENM with various process parameters, such as adsorbent dose, solution pH, initial As(III) concentration, contact time, ionic strength, coexisting anions, and natural organic matter. The experimental results indicated that the maximum adsorption capacity was up to 36.1 mg g-1. Especially, when the adsorbent dosage was higher than 0.3 g L-1, the As(III) concentration was reduced from 100 µg L-1 to less than 10 µg L-1, which indicated the Fe@CTS ENM could effectively remove trace As(III) from water over a wide pH range (from 3.3 to 7.5). Kinetics study demonstrated that the adsorption equilibrium was achieved within 2.0 h, corresponding to a fast uptake of As(III). The presence of common co-ions and humic acid had little effect on the As(III) adsorption. XPS analysis suggested that the FeO, COH, COC and CN groups on the adsorbent surface play dominant roles in the adsorption of As(III). Adsorption-desorption regeneration test further demonstrated that no appreciable loss in the adsorption capacities was observed, which confirmed that the Fe@CTS ENM maintained a desirable life cycle that was free of complex synthesis processes, expensive and toxic materials, qualifying it as an efficient and low-cost As(III) adsorbent.

2.
Sci Rep ; 6: 32480, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27572634

RESUMEN

An environment-friendly iron functionalized chitosan elctrospun nanofiber (ICS-ENF) was synthesized for trace arsenate removal from water. The ICS-ENF was fabricated by electrospinning a mixture of chitosan, PEO and Fe(3+) followed by crosslinking with ammonia vapor. The physicochemical properties of ICS-ENF were characterized by FESEM, TEM-EDX and XRD. The ICS-ENF was found to be highly effective for As(V) adsorption at neutral pH. The As(V) adsorption occurred rapidly and achieved equilibrium within 100 min, which was well fitted by pseudo-second-order kinetics model. The As(V) adsorption decreased with increased ionic strength, suggesting an outer-sphere complexation of As(V) on ICS-ENF. Freundlich model well described the adsorption isotherm, and the maximum adsorption capacity was up to 11.2 mg/g at pH 7.2. Coexisting anions of chloride and sulfate showed negligible influence on As(V) removal, but phosphate and silicate significantly reduced As(V) adsorption by competing for adsorption sites. FTIR and XPS analysis demonstrated -NH, -OH and C-O were responsible for As(V) uptake. ICS-ENF was easily regenerated using 0.003 M NaOH, and the removal rate remained above 98% after ten successively adsorption-desorption recycles. This study extends the potential applicability of electrospun nanofibers for water purification and provides a promising approach for As(V) removal from water.


Asunto(s)
Arseniatos/toxicidad , Nanofibras/química , Purificación del Agua , Agua/química , Adsorción , Arseniatos/química , Quitosano/química , Compuestos Férricos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA