Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
NPJ Regen Med ; 9(1): 6, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245543

RESUMEN

Mesenchymal stem cells (MSCs) are novel therapeutics for the treatment of Crohn's disease. However, their mechanism of action is unclear, especially in disease-relevant chronic models of inflammation. Thus, we used SAMP-1/YitFc (SAMP), a chronic and spontaneous murine model of small intestinal inflammation, to study the therapeutic effects and mechanism of action of human bone marrow-derived MSCs (hMSC). hMSC dose-dependently inhibited naïve T lymphocyte proliferation via prostaglandin E2 (PGE2) secretion and reprogrammed macrophages to an anti-inflammatory phenotype. We found that the hMSCs promoted mucosal healing and immunologic response early after administration in SAMP when live hMSCs are present (until day 9) and resulted in a complete response characterized by mucosal, histological, immunologic, and radiological healing by day 28 when no live hMSCs are present. hMSCs mediate their effect via modulation of T cells and macrophages in the mesentery and mesenteric lymph nodes (mLN). Sc-RNAseq confirmed the anti-inflammatory phenotype of macrophages and identified macrophage efferocytosis of apoptotic hMSCs as a mechanism that explains their long-term efficacy. Taken together, our findings show that hMSCs result in healing and tissue regeneration in a chronic model of small intestinal inflammation and despite being short-lived, exert long-term effects via sustained anti-inflammatory programming of macrophages via efferocytosis.

2.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292753

RESUMEN

Objective: Mesenchymal stem cells (MSCs) are novel therapeutics for treatment of Crohn's disease. However, their mechanism of action is unclear, especially in disease-relevant chronic models of inflammation. Thus, we used SAMP-1/YitFc, a chronic and spontaneous murine model of small intestinal inflammation, to study the therapeutic effect and mechanism of human bone marrow-derived MSCs (hMSC). Design: hMSC immunosuppressive potential was evaluated through in vitro mixed lymphocyte reaction, ELISA, macrophage co-culture, and RT-qPCR. Therapeutic efficacy and mechanism in SAMP were studied by stereomicroscopy, histopathology, MRI radiomics, flow cytometry, RT-qPCR, small animal imaging, and single-cell RNA sequencing (Sc-RNAseq). Results: hMSC dose-dependently inhibited naïve T lymphocyte proliferation in MLR via PGE 2 secretion and reprogrammed macrophages to an anti-inflammatory phenotype. hMSC promoted mucosal healing and immunologic response early after administration in SAMP model of chronic small intestinal inflammation when live hMSCs are present (until day 9) and resulted in complete response characterized by mucosal, histological, immunologic, and radiological healing by day 28 when no live hMSCs are present. hMSC mediate their effect via modulation of T cells and macrophages in the mesentery and mesenteric lymph nodes (mLN). Sc-RNAseq confirmed the anti-inflammatory phenotype of macrophages and identified macrophage efferocytosis of apoptotic hMSCs as a mechanism of action that explains their long-term efficacy. Conclusion: hMSCs result in healing and tissue regeneration in a chronic model of small intestinal inflammation. Despite being short-lived, exert long-term effects via macrophage reprogramming to an anti-inflammatory phenotype. Data Transparency Statement: Single-cell RNA transcriptome datasets are deposited in an online open access repository 'Figshare' (DOI: https://doi.org/10.6084/m9.figshare.21453936.v1 ).

3.
Phytomedicine ; 114: 154738, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36940579

RESUMEN

BACKGROUND: Malaria remains one of the major health concerns, especially in tropical countries. Although drugs such as artemisinin-based combinations are efficient for treating Plasmodium falciparum, the growing threat from multi-drug resistance has become a major challenge. Thus, there is a constant need to identify and validate new combinations to sustain current disease control strategies to overcome the challenge of drug resistance in the malaria parasites. To meet this demand, liquiritigenin (LTG) has been found to positively interact in combination with the existing clinically used drug chloroquine (CQ), which has become unfunctional due to acquired drug resistance. PURPOSE: To evaluate the best interaction between LTG and CQ against CQ- resistant strain of P. falciparum. Furthermore, the in vivo antimalarial efficacy and possible mechanism of action of the best combination was also assessed. METHODS: The in vitro anti-plasmodial potential of LTG against CQ- resistant strain K1 of P. falciparum was tested using Giemsa staining method. The behaviour of the combinations was evaluated using the fix ratio method and evaluated the interaction of LTG and CQ by calculating the fractional inhibitory concentration index (FICI). Oral toxicity study was carried out in a mice model. In vivo antimalarial efficacy of LTG alone and in combination with CQ was evaluated using a four-day suppression test in a mouse model. The effect of LTG on CQ accumulation was measured using HPLC and the rate of alkalinization of the digestive vacuole. Cytosolic Ca2+ level, mitochondrial membrane potential, caspase-like activity, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and Annexin V Apoptosis assay to assess anti-plasmodial potential. Proteomics analysis was evaluated by LC-MS/MS analysis. RESULTS: LTG possesses anti-plasmodial activity on its own and it showed to be an adjuvant of CQ. In in vitro studies, LTG showed synergy with CQ only in the ratio (CQ: LTG-1:4) against CQ-resistant strain (K1) of P. falciparum. Interestingly, in vivo studies, LTG in combination with CQ showed higher chemo-suppression and enhanced mean survival time at much lower concentrations compared to individual doses of LTG and CQ against CQ- resistant strain (N67) of Plasmodium yoelli nigeriensis. LTG was found to increase the CQ accumulation into digestive vacuole, reducing the rate of alkalinization, in turn increasing cytosolic Ca2+ level, loss of mitochondrial potential, caspase-3 activity, DNA damage and externalization of phosphatidylserine of the membrane (in vitro). These observations indicate the involvement of apoptosis-like death of P. falciparum that might be due to the accumulation of CQ. CONCLUSION: LTG showed synergy with CQ in the ratio LTG: CQ, 4:1) in vitro and was able to curtail the IC50 of CQ and LTG. Interestingly, in vivo in combination with CQ, LTG showed higher chemo-suppression as well as enhanced mean survival time at a much lower concentrations of both the partners as compared to an individual dose of CQ and LTG. Thus, synergistic drug combination offers the possibility to enhance CQ efficacy in chemotherapy.


Asunto(s)
Antimaláricos , Malaria , Animales , Ratones , Cloroquina/farmacología , Antimaláricos/farmacología , Cromatografía Liquida , Vacuolas , Espectrometría de Masas en Tándem , Malaria/tratamiento farmacológico , Plasmodium falciparum , Apoptosis , Resistencia a Medicamentos , Modelos Animales de Enfermedad
4.
AAPS PharmSciTech ; 22(8): 259, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34704177

RESUMEN

Cliv-92 is a mixture of three structurally similar coumarinolignoids and a proven hepatoprotective agent. Low aqueous solubility and poor bioavailability are notable hindrances for its further use. Therefore, glycyrrhetinic acid-linked chitosan nanoparticles loaded with Cliv-92 were prepared for active targeting to the liver. The nanoparticles were prepared by the ionic gelation method to avoid the use of toxic solvents/rigorous agitation. The method of preparation was optimized using a central composite design with independent variables, namely polymer: drug ratio (3:1, w/w), crosslinker concentration (0.5%), and stirring speed (750 rpm). The optimized nanoparticles had a mean particle size of 185.17 nm, a polydispersity index of 0.41, a zeta potential of 30.93 mV, and a drug loading of 16.30%. The prepared formulation showed sustained release of approximately 63% of loaded Cliv-92 over 72 h. The nanoparticles were freeze-dried for long-term storage and further characterized. The formulation was found to be biocompatible for parenteral delivery. In vivo imaging study showed that optimized nanoparticles were preferentially accumulated in the liver and successfully targeting the liver. The present study successfully demonstrated the improved pharmacokinetic properties (≈12% relative bioavailability) and efficacy profile (evidenced by in vivo and histopathological studies) of fabricated Cliv-92 nanoparticles.


Asunto(s)
Quitosano , Ácido Glicirretínico , Nanopartículas , Portadores de Fármacos , Tamaño de la Partícula , Solubilidad
5.
Front Pharmacol ; 12: 628970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776772

RESUMEN

Malaria remains one of the major health concerns due to the resistance of Plasmodium species toward the existing drugs warranting an urgent need for new antimalarials. Thymol derivatives were known to exhibit enhanced antimicrobial activities; however, no reports were found against Plasmodium spp. In the present study, the antiplasmodial activity of thymol derivatives was evaluated against chloroquine-sensitive (NF-54) and -resistant (K1) strains of Plasmodium falciparum. Among the thymol derivatives tested, 4-chlorothymol showed potential activity against sensitive and resistant strains of P. falciparum. 4-Chlorothymol was found to increase the reactive oxygen species and reactive nitrogen species level. Furthermore, 4-chlorothymol could perturb the redox balance by modulating the enzyme activity of GST and GR. 4-Chlorothymol also showed synergy with chloroquine against chloroquine-resistant P. falciparum. 4-Chlorothymol was found to significantly suppress the parasitemia and increase the mean survival time in in vivo assays. Interestingly, in in vivo assay, 4-chlorothymol in combination with chloroquine showed higher chemosuppression as well as enhanced mean survival time at a much lower concentration as compared to individual doses of chloroquine and 4-chlorothymol. These observations clearly indicate the potential use of 4-chlorothymol as an antimalarial agent, which may also be effective in combination with the existing antiplasmodial drugs against chloroquine-resistant P. falciparum infection. In vitro cytotoxicity/hemolytic assay evidently suggests that 4-chlorothymol is safe for further exploration of its therapeutic properties.

6.
Biomed Pharmacother ; 137: 111311, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33524782

RESUMEN

4-chloro eugenol (4CE), a semisynthetic analog of phytomolecule eugenol exhibited potent antiplasmodial activity with IC50 in the range of 1.5-5 µM against sensitive as well as drug resistant strain of P. falciparum. This analog also showed synergy with a clinically used antimalarial drug artesunate and was able to curtail the IC50 of artesunate up to 4-5 folds. Although, 4CE did not show any effect on heme polymerization, the most common drug target in the malaria parasite, it could increase the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) alone as well as in combination with artesunate. Further, 4CE induced oxidative stress was observed to affect the macromolecules in terms of DNA damage, protein carbonylation and lipid peroxidation. At the physiological level, cellular organelles like mitochondria and endoplasmic reticulum were observed to be get affected by 4CE in terms of membrane depolarization and calcium ion leakage respectively. These observations could be validated by expression analysis of oxidative stress responsive genes and proteins. Further, in in vivo assay, 4CE showed significant chemo-suppression of parasitemia as well as an increase in mean survival time in the murine malaria model. Interestingly, in combination with artesunate, 4CE showed higher chemo-suppression as well as enhanced mean survival time at a much lower concentrations of both the partners as compared to an individual dose of artesunate and 4CE. A combination of 4CE and artesunate was also observed to attenuate cerebral malaria pathogenesis.


Asunto(s)
Antimaláricos/farmacología , Artesunato/farmacología , Eugenol/farmacología , Estrés Oxidativo/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Animales , Calcio/metabolismo , Daño del ADN , Resistencia a Medicamentos/efectos de los fármacos , Sinergismo Farmacológico , Peroxidación de Lípido/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Carbonilación Proteica/efectos de los fármacos , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Nat Prod Res ; 34(18): 2647-2651, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30663356

RESUMEN

A polyphenolic flavonoid, Silymarin isolated from Silybum marianum is widely known for its hepatoprotective action. In the present study anti-plasmodial activity of Silymarin has been demonstrated for the first time having IC50 of 14 ± 0.33 µM against the NF-54 strain of P. falciparum with high selectivity index (>100). The parasitostatic action is exerted through inhibition of ß-hematin/hemozoin formation which is due to the interaction (Kd = 3.63 ± 0.9µM) of silymarin with free heme in a Stoichiometry of 1:1 Silymarin: heme complex resulting into heme-induced membrane damage in the parasite. Silymarin could hinder the glutathione and hydrogen peroxide-induced heme detoxification. Silymarin also induces apoptosis in the parasite through the elevation of caspase-3 level in a dose-dependent manner. Results from the docking studies suggest that Silymarin interacts with heme.


Asunto(s)
Flavonoides/farmacología , Hemo/metabolismo , Plasmodium falciparum/efectos de los fármacos , Silimarina/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Hemoproteínas/antagonistas & inhibidores , Concentración 50 Inhibidora , Plasmodium falciparum/crecimiento & desarrollo , Silimarina/química , Silimarina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA