Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0303137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722911

RESUMEN

The Asian tiger mosquito, Aedes albopictus, is a significant public health concern owing to its expanding habitat and vector competence. Disease outbreaks attributed to this species have been reported in areas under its invasion, and its northward expansion in Japan has caused concern because of the potential for dengue virus infection in newly populated areas. Accurate prediction of Ae. albopictus distribution is crucial to prevent the spread of the disease. However, limited studies have focused on the prediction of Ae. albopictus distribution in Japan. Herein, we used the random forest model, a machine learning approach, to predict the current and potential future habitat ranges of Ae. albopictus in Japan. The model revealed that these mosquitoes prefer urban areas over forests in Japan on the current map. Under predictions for the future, the species will expand its range to the surrounding areas and eventually reach many areas of northeastern Kanto, Tohoku District, and Hokkaido, with a few variations in different scenarios. However, the affected human population is predicted to decrease owing to the declining birth rate. Anthropogenic and climatic factors contribute to range expansion, and urban size and population have profound impacts. This prediction map can guide responses to the introduction of this species in new areas, advance the spatial knowledge of diseases vectored by it, and mitigate the possible disease burden. To our knowledge, this is the first distribution-modelling prediction for Ae. albopictus with a focus on Japan.


Asunto(s)
Aedes , Mosquitos Vectores , Animales , Aedes/virología , Aedes/fisiología , Japón , Mosquitos Vectores/virología , Ecosistema , Humanos , Distribución Animal , Dengue/transmisión , Dengue/epidemiología , Aprendizaje Automático , Modelos Biológicos
2.
Insect Biochem Mol Biol ; 138: 103637, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454015

RESUMEN

Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved.


Asunto(s)
Acetilcolinesterasa/genética , Chinches/genética , Carbamatos/farmacología , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Organofosfatos/farmacología , Acetilcolinesterasa/metabolismo , Animales , Chinches/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Masculino , Mutación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA