Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
JACS Au ; 4(6): 2262-2266, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38938790

RESUMEN

This study highlights the novel potential of molecular aggregates as inhibitors of a disease-related protein. Enzyme inhibitors have been studied and developed as molecularly targeted drugs and have been applied for cancer, autoimmune diseases, and infections. In many cases, enzyme inhibitors that are used for therapeutic applications interact directly with enzymes in a molecule-to-molecule manner. We found that the aggregates of a small compound, Mn007, inhibited bovine pancreatic DNase I. Once Mn007 molecules formed aggregates, they exhibited inhibitory effects specific to DNases that require divalent metal ions. A DNase secreted by Streptococcus pyogenes causes streptococcal toxic shock syndrome (STSS). STSS is a severe infectious disease with a fatality rate exceeding 30% in patients, even in this century. S. pyogenes disrupts the human barrier system against microbial infections through the secreted DNase. Until now, the discovery/development of a DNase inhibitor has been challenging. Mn007 aggregates were found to inhibit the DNase secreted by S. pyogenes, which led to the successful suppression of S. pyogenes growth in human whole blood. To date, molecular aggregation has been outside the scope of drug discovery. The present study suggests that molecular aggregation is a vast area to be explored for drug discovery and development because aggregates of small-molecule compounds can inhibit disease-related enzymes.

2.
Cells ; 12(16)2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37626850

RESUMEN

We previously demonstrated that neural stem/progenitor cells (NSPCs) were induced within and around the ischemic areas in a mouse model of ischemic stroke. These injury/ischemia-induced NSPCs (iNSPCs) differentiated to electrophysiologically functional neurons in vitro, indicating the presence of a self-repair system following injury. However, during the healing process after stroke, ischemic areas were gradually occupied by inflammatory cells, mainly microglial cells/macrophages (MGs/MΦs), and neurogenesis rarely occurred within and around the ischemic areas. Therefore, to achieve neural regeneration by utilizing endogenous iNSPCs, regulation of MGs/MΦs after an ischemic stroke might be necessary. To test this hypothesis, we used iNSPCs isolated from the ischemic areas after a stroke in our mouse model to investigate the role of MGs/MΦs in iNSPC regulation. In coculture experiments, we show that the presence of MGs/MΦs significantly reduces not only the proliferation but also the differentiation of iNSPCs toward neuronal cells, thereby preventing neurogenesis. These effects, however, are mitigated by MG/MΦ depletion using clodronate encapsulated in liposomes. Additionally, gene ontology analysis reveals that proliferation and neuronal differentiation are negatively regulated in iNSPCs cocultured with MGs/MΦs. These results indicate that MGs/MΦs negatively impact neurogenesis via iNSPCs, suggesting that the regulation of MGs/MΦs is essential to achieve iNSPC-based neural regeneration following an ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Accidente Cerebrovascular , Animales , Ratones , Microglía , Diferenciación Celular , Modelos Animales de Enfermedad , Proliferación Celular , Encéfalo
3.
Nat Commun ; 13(1): 7575, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539416

RESUMEN

The development of new antibacterial drugs with different mechanisms of action is urgently needed to address antimicrobial resistance. MraY is an essential membrane enzyme required for bacterial cell wall synthesis. Sphaerimicins are naturally occurring macrocyclic nucleoside inhibitors of MraY and are considered a promising target in antibacterial discovery. However, developing sphaerimicins as antibacterials has been challenging due to their complex macrocyclic structures. In this study, we construct their characteristic macrocyclic skeleton via two key reactions. Having then determined the structure of a sphaerimicin analogue bound to MraY, we use a structure-guided approach to design simplified sphaerimicin analogues. These analogues retain potency against MraY and exhibit potent antibacterial activity against Gram-positive bacteria, including clinically isolated drug resistant strains of S. aureus and E. faecium. Our study combines synthetic chemistry, structural biology, and microbiology to provide a platform for the development of MraY inhibitors as antibacterials against drug-resistant bacteria.


Asunto(s)
Nucleósidos , Staphylococcus aureus , Nucleósidos/farmacología , Nucleósidos/química , Relación Estructura-Actividad , Staphylococcus aureus/metabolismo , Antibacterianos/química , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Transferasas/metabolismo
4.
Bioorg Med Chem ; 73: 117011, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36191548

RESUMEN

The total synthesis of capuramycin (1), which is a promising anti-tubercular antibiotics, has been accomplished using Ferrier-type I reaction as a key step. This total synthesis is an alternative approach to the synthesis of capuramycin and its analogues. The 3'-O-demethyl analogue (2), which exhibits an equivalent antibacterial activity as capuramycin (1) against Mycobacterium smegmatis and Mycobacterium avium, is suggested to have potential as a lead structure of capuramycin analogues because 2 is more accessible from a synthetic view point.


Asunto(s)
Aminoglicósidos , Mycobacterium smegmatis , Aminoglicósidos/química , Antibacterianos/química , Relación Estructura-Actividad
5.
Stem Cells Dev ; 31(23-24): 756-765, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36053672

RESUMEN

Stem cell therapy is used to restore neurological function in stroke patients. We have previously reported that ischemia-induced multipotent stem cells (iSCs), which are likely derived from brain pericytes, develop in poststroke human and mouse brains. Although we have demonstrated that iSCs can differentiate into neural lineage cells, the factors responsible for inducing this differentiation remain unclear. In this study, we found that LDN193189, a bone morphogenetic protein (BMP) inhibitor, caused irreversible changes in the shape of iSCs. In addition, compared with iSCs incubated without LDN193189, the iSCs incubated with LDN193189 (LDN-iSCs) showed upregulated expression of neural lineage-related genes and proteins, including those expressed in neural stem/progenitor cells (NSPCs), and downregulated expression of mesenchymal and pericytic-related genes and proteins. Moreover, microarray analysis revealed that LDN-iSCs and NSPCs had similar gene expression profiles. Furthermore, LDN-iSCs differentiated into electrophysiologically functional neurons. These results indicate that LDN193189 induces NSPC-like cells from iSCs, suggesting that bioactive molecules regulating BMP signaling are potential targets for promoting neurogenesis from iSCs in the pathological brain, such as during ischemic stroke. We believe that our findings will bring us one step closer to the clinical application of iSCs.


Asunto(s)
Proteínas Morfogenéticas Óseas , Isquemia , Células Madre Multipotentes , Células-Madre Neurales , Animales , Humanos , Ratones , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores
6.
J Histochem Cytochem ; 70(7): 495-513, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35708491

RESUMEN

Nerves in the renal parenchyma comprise sympathetic nerves that act on renal arteries and tubules to decrease blood flow and increase primary urine reabsorption, respectively. Synaptic vesicles release neurotransmitters that activate their effector tissues. However, the mechanisms by which neurotransmitters exert individual responses to renal effector cells remain unknown. Here, we investigated the spatial and molecular compositional associations of renal Schwann cells (SC) supporting the nerve terminals in male rats. The nerve terminals of vascular smooth muscle cells (SMCs) enclosed by renal SC processes were exposed through windows facing the effectors with presynaptic specializations. We found that the adrenergic receptors (ARs) α2A, α2C, and ß2 were localized in the SMC and the basal side of the tubules, where the nerve terminals were attached, whereas the other subtypes of ARs were distributed in the glomerular and luminal side, where the norepinephrine released from nerve endings may have indirect access to ARs. In addition, integrins α4 and ß1 were coexpressed in the nerve terminals. Thus, renal nerve terminals could contact their effectors via integrins and may have a structure, covered by SC processes, suitable for intensive and directional release of neurotransmitters into the blood, rather than specialized structures in the postsynaptic region.


Asunto(s)
Terminaciones Nerviosas , Sistema Nervioso Simpático , Animales , Integrinas , Masculino , Norepinefrina , Ratas , Receptores Adrenérgicos , Células de Schwann , Sistema Nervioso Simpático/fisiología
7.
Chemistry ; 28(51): e202200995, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35697660

RESUMEN

Tuberculosis (TB) is a leading source of infectious disease mortality globally. Antibiotic-resistant strains comprise an estimated 10 % of new TB cases and present an urgent need for novel therapeutics. ß-lactam antibiotics have traditionally been ineffective against M. tuberculosis (Mtb), the causative agent of TB, due to the organism's inherent expression of ß-lactamases that destroy the electrophilic ß-lactam warhead. We have developed novel ß-lactam conjugates, which exploit this inherent ß-lactamase activity to achieve selective release of pyrazinoic acid (POA), the active form of a first-line TB drug. These conjugates are selectively active against M. tuberculosis and related mycobacteria, and activity is retained or even potentiated in multiple resistant strains and models. Preliminary mechanistic investigations suggest that both the POA "warhead" as well as the ß-lactam "promoiety" contribute to the observed activity, demonstrating a codrug strategy with important implications for future TB therapy.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Pirazinamida/análogos & derivados , Pirazinamida/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , beta-Lactamas/farmacología
8.
Bioorg Med Chem ; 65: 116744, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35500521

RESUMEN

It is important to understand and control the biologically active conformation in medicinal chemistry. Muraymycins and caprazamycins, which are strong inhibitors of MraY, are promising antibacterial agents with a novel mode of action. Focusing on a sugar puckering and a dihedral angle ϕ of the uridine moiety of these natural products, LNA/BNA-type 5'-O-aminoribosyluridine analogues, whose puckering of the ribose moiety are completely restricted to the N-type, were designed and synthesized as simplified MraY inhibitors. Their conformation-activity relationship was further investigated in details. The conformation-activity relationship analysis investigated in this study could be a general guideline for simplification and rational drug design of MraY inhibitory nucleoside natural products.


Asunto(s)
Productos Biológicos , Transferasas , Antibacterianos/química , Proteínas Bacterianas , Productos Biológicos/química , Relación Estructura-Actividad , Transferasas (Grupos de Otros Fosfatos Sustitutos)
9.
Microbiol Immunol ; 66(1): 10-14, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34546594

RESUMEN

Mycobacterium tuberculosis, the causative agent of tuberculosis, possess flavin-dependent thymidylate synthase, ThyX. Since thyX is absent in humans and was shown to be essential for M. tuberculosis normal growth, ThyX is thought to be an attractive novel TB drug target. This study assessed thyX essentiality in Mycobacterium bovis BCG strains using CRISPR interference based gene silencing and found that thyX is not essential in an M. bovis BCG Tokyo derivative strain. A thyX deletion mutant strain was successfully constructed from that strain, which reinforces the non-essentiality of thyX under a certain genetic background.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Vacuna BCG , Células Clonales , Silenciador del Gen , Humanos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética
10.
Antimicrob Agents Chemother ; 65(10): e0100921, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34310216

RESUMEN

Posttranslational methylation of the A site of 16S rRNA at position A1408 leads to pan-aminoglycoside resistance encompassing both 4,5- and 4,6-disubstituted 2-deoxystreptamine (DOS) aminoglycosides. To date, NpmA is the only acquired enzyme with such a function. Here, we present the function and structure of NpmB1, whose sequence was identified in Escherichia coli genomes registered from the United Kingdom. NpmB1 possesses 40% amino acid identity with NpmA1 and confers resistance to all clinically relevant aminoglycosides, including 4,5-DOS agents. Phylogenetic analysis of NpmB1 and NpmB2, its single-amino-acid variant, revealed that the encoding gene was likely acquired by E. coli from a soil bacterium. The structure of NpmB1 suggests that it requires a structural change of the ß6/7 linker in order to bind to 16S rRNA. These findings establish NpmB1 and NpmB2 as the second group of acquired pan-aminoglycoside resistance 16S rRNA methyltransferases.


Asunto(s)
Aminoglicósidos , Proteínas de Escherichia coli , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Metiltransferasas/genética , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA