Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893293

RESUMEN

Within the fields of infectious disease diagnostics, microfluidic-based integrated technology systems have become a vital technology in enhancing the rapidity, accuracy, and portability of pathogen detection. These systems synergize microfluidic techniques with advanced molecular biology methods, including reverse transcription polymerase chain reaction (RT-PCR), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR), have been successfully used to identify a diverse array of pathogens, including COVID-19, Ebola, Zika, and dengue fever. This review outlines the advances in pathogen detection, attributing them to the integration of microfluidic technology with traditional molecular biology methods and smartphone- and paper-based diagnostic assays. The cutting-edge diagnostic technologies are of critical importance for disease prevention and epidemic surveillance. Looking ahead, research is expected to focus on increasing detection sensitivity, streamlining testing processes, reducing costs, and enhancing the capability for remote data sharing. These improvements aim to achieve broader coverage and quicker response mechanisms, thereby constructing a more robust defense for global public health security.


Asunto(s)
Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Microfluídica/métodos , Enfermedades Transmisibles/diagnóstico , COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Técnicas Analíticas Microfluídicas/métodos , Dengue/diagnóstico , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/virología , Virus Zika/genética , Virus Zika/aislamiento & purificación
2.
Int J Cancer ; 154(7): 1158-1163, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059815

RESUMEN

The identification and therapeutic targeting of actionable gene mutations across many cancer types has resulted in improved response rates in a minority of patients. The identification of actionable mutations is usually not sufficient to ensure complete nor durable responses, and in rare cancers, where no therapeutic standard of care exists, precision medicine indications are often based on pan-cancer data. The inclusion of functional data, however, can provide evidence of oncogene dependence and guide treatment selection based on tumour genetic data. We applied an ex vivo cancer explant modelling approach, that can be embedded in routine clinical care and allows for pathological review within 10 days of tissue collection. We now report that ex vivo tissue modelling provided accurate longitudinal response data in a patient with BRAFV600E -mutant papillary thyroid tumour with squamous differentiation. The ex vivo model guided treatment selection for this patient and confirmed treatment resistance when the patient's disease progressed after 8 months of treatment.


Asunto(s)
Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Mutación , Proteínas Proto-Oncogénicas B-raf/genética
3.
Nat Commun ; 14(1): 1516, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934113

RESUMEN

Resistance to immune checkpoint inhibitor therapies in melanoma is common and remains an intractable clinical challenge. In this study, we comprehensively profile immune checkpoint inhibitor resistance mechanisms in short-term tumor cell lines and matched tumor samples from melanoma patients progressing on immune checkpoint inhibitors. Combining genome, transcriptome, and high dimensional flow cytometric profiling with functional analysis, we identify three distinct programs of immunotherapy resistance. Here we show that resistance programs include (1) the loss of wild-type antigen expression, resulting from tumor-intrinsic IFNγ signaling and melanoma de-differentiation, (2) the disruption of antigen presentation via multiple independent mechanisms affecting MHC expression, and (3) immune cell exclusion associated with PTEN loss. The dominant role of compromised antigen production and presentation in melanoma resistance to immune checkpoint inhibition highlights the importance of treatment salvage strategies aimed at the restoration of MHC expression, stimulation of innate immunity, and re-expression of wild-type differentiation antigens.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Transcriptoma , Inmunoterapia/métodos , Inmunidad Innata
4.
J Invest Dermatol ; 143(7): 1246-1256.e8, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36736995

RESUMEN

Immunotherapy targeting PD-1 and/or CTLA4 leads to durable responses in a proportion of patients with melanoma. However, many patients will not respond to these immune checkpoint inhibitors, and up to 60% of responding patients will develop treatment resistance. We describe a vulnerability in melanoma driven by immune cell activity that provides a pathway towards additional treatment options. This study evaluated short-term melanoma cell lines (referred to as PD1 PROG cells) derived from melanoma metastases that progressed on PD-1 inhibitor-based therapy. We show that the cytokine IFN-γ primes melanoma cells for apoptosis by promoting changes in the accumulation and interactions of apoptotic regulators MCL-1, NOXA, and BAK. The addition of pro-apoptotic BH3 mimetic drugs sensitized PD1 PROG melanoma cells to apoptosis in response to IFN-γ or autologous immune cell activation. These findings provide translatable strategies for combination therapies in melanoma.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/uso terapéutico , Línea Celular Tumoral , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Melanoma/patología , Interferón gamma
5.
Anal Chim Acta ; 1239: 340737, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628732

RESUMEN

Okadaic acid (OA) is a marine biotoxin that accumulates in seafood and can cause diarrheic shellfish poisoning if consumed. Accordingly, many countries have established regulatory limits for the content of OA in shellfish. At present, methods used for the detection of marine toxins are time-consuming and labor-intensive. In order to realize rapid, simple, and accurate detection of OA, we developed a novel microfluidic immunosensor based on magnetic beads modified with a highly specific and sensitive monoclonal antibody (mAb) against OA that is used in conjunction with smartphone imaging to realize the rapid detection of OA in shellfish. The method achieves on-site detection results within 1 h with an IC50 value of 3.30 ng/mL for OA and a limit of detection (LOD) of 0.49 ng/mL. In addition, the analysis of real samples showed that the recoveries for spiked shellfish samples ranged from 84.91% to 95.18%, and the results were confirmed by indirect competitive enzyme-linked immunosorbent assay (icELISA), indicating that the method has good accuracy and precision. Furthermore, the results are reported in a specially designed smartphone app. The microfluidic immunosensor has the advantages of simple operation, rapid detection, and high sensitivity, providing a reliable technical solution for detecting OA residues in shellfish.


Asunto(s)
Técnicas Biosensibles , Ácido Ocadaico/análisis , Microfluídica , Inmunoensayo/métodos , Mariscos/análisis , Alimentos Marinos/análisis , Fenómenos Magnéticos
6.
Cancers (Basel) ; 14(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36230753

RESUMEN

Immunotherapy has transformed the management of patients with advanced melanoma, with five-year overall survival rates reaching 52% for combination immunotherapies blocking the cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) and programmed cell death-1 (PD1) immune axes. Yet, our understanding of local and systemic determinants of immunotherapy response and resistance is restrained by the paucity of preclinical models, particularly those for anti-PD1 monotherapy. We have therefore generated a novel murine model of melanoma by integrating key immunotherapy response biomarkers into the model development workflow. The resulting YUMM3.3UVRc34 (BrafV600E; Cdkn2a-/-) model demonstrated high mutation burden and response to interferon (IFN)γ, including induced expression of antigen-presenting molecule MHC-I and the principal PD1 ligand PD-L1, consistent with phenotypes of human melanoma biopsies from patients subsequently responding to anti-PD1 monotherapy. Syngeneic immunosufficient mice bearing YUMM3.3UVRc34 tumors demonstrated durable responses to anti-PD1, anti-CTLA4, or combined treatment. Immunotherapy responses were associated with early on-treatment changes in the tumor microenvironment and circulating T-cell subsets, and systemic immunological memory underlying protection from tumor recurrence. Local and systemic immunological landscapes associated with immunotherapy response in the YUMM3.3UVRc34 melanoma model recapitulate immunotherapy responses observed in melanoma patients and identify discrete immunological mechanisms underlying the durability of responses to anti-PD1 and anti-CTLA4 treatments.

7.
Cancer Gene Ther ; 29(10): 1384-1393, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35352024

RESUMEN

Uveal melanoma (UM) is a rare cancer arising from melanocytes in the uveal tract of the eye. Despite effective primary treatment, there is no approved therapy for metastatic UM and prognosis and survival remain poor. Over 90% of UM are driven by mutations affecting the Gα subunits encoded by the GNAQ and GNA11 genes. These mutations activate downstream and targetable signaling pathways, including the protein kinase C (PKC) cascade. PKC inhibitors have been used in clinical trials for metastatic UM but have shown limited efficacy. In this study, we examined the signaling and functional effects of two PKC inhibitors (AEB071 and IDE196) in a panel of UM cell models. In response to PKC inhibition, all UM cell lines showed potent suppression of PKC activity, but this was not sufficient to predict PKC inhibitor sensitivity and only two UM cell lines showed substantial PKC inhibitor-induced cell death. The differences in UM cell responses to PKC inhibition were not attributable to the degree or timing of PKC suppression or inhibition of the downstream mitogen-activated protein kinase (MAPK) or phosphatidylinositol-3-kinase (PI3K) pathways. Instead, UM cell show complex, PKC-independent signaling pathways that contribute to their survival and resistance to targeted therapies.


Asunto(s)
Inhibidores de Proteínas Quinasas , Neoplasias de la Úvea , Línea Celular Tumoral , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/uso terapéutico , Humanos , Melanoma , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositoles/uso terapéutico , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/patología
8.
Front Biosci (Landmark Ed) ; 27(12): 320, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36624940

RESUMEN

The adaptor protein Caspase Recruitment Domain Family Member 9 (CARD9) plays an indispensable role in innate immunity. Recent studies indicate that dysregulated CARD9 is a critical risk factor in the progression of colorectal cancer (CRC). This review provides novel insights into the functions of CARD9 in CRC, particularly in delineating its role in disrupting the host microbe balance, fueling gut microbiota metabolism and inducing systemic immunoglobulin G (IgG) antifungal antibodies. These pathways provide important information that can potentially be used for therapeutic innovation in developing potential vaccines for CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Inmunidad Innata , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras de Señalización CARD/genética
9.
Biomedicines ; 9(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073253

RESUMEN

Immune checkpoint inhibitors that target the programmed cell death protein 1 (PD1) pathway have revolutionized the treatment of patients with advanced metastatic melanoma. PD1 inhibitors reinvigorate exhausted tumor-reactive T cells, thus restoring anti-tumor immunity. Tumor necrosis factor alpha (TNFα) is abundantly expressed as a consequence of T cell activation and can have pleiotropic effects on melanoma response and resistance to PD1 inhibitors. In this study, we examined the influence of TNFα on markers of melanoma dedifferentiation, antigen presentation and immune inhibition in a panel of 40 melanoma cell lines. We report that TNFα signaling is retained in all melanomas but the downstream impact of TNFα was dependent on the differentiation status of melanoma cells. We show that TNFα is a poor inducer of antigen presentation molecules HLA-ABC and HLA-DR but readily induces the PD-L2 immune checkpoint in melanoma cells. Our results suggest that TNFα promotes dynamic changes in melanoma cells that may favor immunotherapy resistance.

10.
Biomolecules ; 10(10)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076392

RESUMEN

Genetic alterations in the INK4a/ARF (or CDKN2A) locus have been reported in many cancer types, including melanoma; head and neck squamous cell carcinomas; lung, breast, and pancreatic cancers. In melanoma, loss of function CDKN2A alterations have been identified in approximately 50% of primary melanomas, in over 75% of metastatic melanomas, and in the germline of 40% of families with a predisposition to cutaneous melanoma. The CDKN2A locus encodes two critical tumor suppressor proteins, the cyclin-dependent kinase inhibitor p16INK4a and the p53 regulator p14ARF. The majority of CDKN2A alterations in melanoma selectively target p16INK4a or affect the coding sequence of both p16INK4a and p14ARF. There is also a subset of less common somatic and germline INK4a/ARF alterations that affect p14ARF, while not altering the syntenic p16INK4a coding regions. In this review, we describe the frequency and types of somatic alterations affecting the CDKN2A locus in melanoma and germline CDKN2A alterations in familial melanoma, and their functional consequences in melanoma development. We discuss the clinical implications of CDKN2A inactivating alterations and their influence on treatment response and resistance.


Asunto(s)
Carcinogénesis/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Melanoma/genética , Proteína p53 Supresora de Tumor/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Melanoma/patología , Mutación/genética , Proteína p14ARF Supresora de Tumor/genética
11.
Pigment Cell Melanoma Res ; 33(2): 345-357, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31518489

RESUMEN

Inhibitors targeting the mitogen-activated protein kinase (MAPK) pathway and immune checkpoint molecules have dramatically improved the survival of patients with BRAFV600 -mutant melanoma. For BRAF/RAS wild-type (WT) melanoma patients, however, immune checkpoint inhibitors remain the only effective therapeutic option with 40% of patients responding to PD-1 inhibition. In the present study, a large panel of 10 BRAFV600 -mutant and 13 BRAF/RAS WT melanoma cell lines was analyzed to examine MAPK dependency and explore the potential utility of MAPK inhibitors in this melanoma subtype. We now show that the majority of BRAF/RAS WT melanoma cell lines (8/13) display some degree of sensitivity to trametinib treatment and resistance to trametinib in this melanoma subtype is associated with, but not mediated by NF1 suppression. Although knockdown of NF1 stimulates RAS and CRAF activity, the activation of CRAF by NF1 knockdown is limited by ERK-dependent feedback in BRAF-mutant cells, but not in BRAF/RAS WT melanoma cells. Thus, NF1 is not a dominant regulator of MAPK signaling in BRAF/RAS WT melanoma, and co-targeting multiple MAP kinase nodes provides a therapeutic opportunity for this melanoma subtype.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Proteínas ras/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/genética , Melanoma/patología , Neurofibromina 1/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-raf/metabolismo , Piridonas/farmacología , Piridonas/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
12.
Diagn Pathol ; 9: 153, 2014 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-25106743

RESUMEN

BACKGROUND: The PIK3CA gene mutation was found to associate with prognosis and might affect molecular targeted therapy in esophageal carcinoma (EC). The aim of this study is to compare different methods for analyzing the PIK3CA gene mutation in EC. METHODS: Genomic DNA was extracted from 106 surgically resected EC patient tissues. The PIK3CA mutation status (exons 9 and 20) were screened by mutant-enrich liquid chip (ME-Liquidchip), Sanger sequencing, and pyrosequencing. And all samples with mutations were independently reassessed using amplification refractory mutation system (ARMS) methods again. RESULTS: PIK3CA mutation rates were identified as 11.3% (12/106) by ME-Liquidchip. 10 mutations occurred in exon 9 and 2 in exon 20, including G1624A:E542K (n = 4), G1633A:E545K (n = 6) and A3140G:H1047R (n = 2). The results were further verified by ARMS methods. Among these 12 cases characterized for PIK3CA mutation, however, only 7 and 6 cases were identified by Sanger sequencing (6.6%,7/106) and pyrosequencing (5.7%,6/106), respectively. CONCLUSION: Sanger sequencing and pyrosequencing are less sensitive and are not efficiently applicable to the detection of PIK3CA mutation in EC samples. Choosing between ME-Liquidchip and ARMS will depend on laboratory facilities and expertise. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_153.


Asunto(s)
Análisis Mutacional de ADN/métodos , Neoplasias Esofágicas/genética , Fosfatidilinositol 3-Quinasas/genética , Adulto , Anciano , Anciano de 80 o más Años , China , Fosfatidilinositol 3-Quinasa Clase I , Neoplasias Esofágicas/patología , Exones/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA