Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Environ Res ; : 119781, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142458

RESUMEN

Bisphenol S (BPS) is widely used in the manufacture products and increase the risk of cardiovascular diseases. The effect of the association between obesity and BPS on cardiac outcomes is still unknown. Male C57BL/6 mice were divided into standard chow diet (SC; 15 kJ/g), standard chow diet + BPS (SCB), high-fat diet (HF; 21 kJ/g), and high-fat diet + BPS (HFB). Over 12 weeks, the groups were exposed to BPS through drinking water (dose: 25 µg/Kg/day) and/or a HF diet. We evaluated: body mass (BM), total cholesterol, systolic blood pressure (SBP), left ventricle (LV) mass, and cardiac remodeling. In the SCB group, BM, total cholesterol, and SBP increase were augmented in relation to the SC group. In the HF and HFB groups, these parameters were higher than in the SC and SCB groups. Cardiac hypertrophy was evidenced by augmented LV mass and wall thickness, and ANP protein expression in all groups in comparison to the SC group. Only the HFB group had a thicker LV wall than SCB and HF groups, and increased cardiomyocyte area when compared with SC and SCB groups. Concerning cardiac fibrosis, SCB, HF, and HFB groups presented higher interstitial collagen area, TGFß, and α-SMA protein expression than the SC group. Perivascular collagen area was increased only in the HF and HFB groups than SC group. Higher IL-6, TNFα, and CD11c protein expression in all groups than the SC group evidenced inflammation. All groups had elevated CD36 and PPARα protein expression in relation to the SC group, but only HF and HFB groups promoted cardiac steatosis with increased perilipin 5 protein expression than the SC group. BPS exposure alone promoted cardiac remodeling with pathological concentric hypertrophy, fibrosis, and inflammation. Diet-induced remodeling is aggravated when associated with BPS, with marked hypertrophy, alongside fibrosis, inflammation, and lipid accumulation.

2.
Mol Cell Endocrinol ; : 112343, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147263

RESUMEN

Tributyltin (TBT) is an organotin compound that has several adverse health effects, including the development of obesity. Although obesity is strongly associated with adipose redox imbalance, there is a lack of information on whether TBT promotes a pro-oxidative environment in WAT. Thus, adult male Wistar rats were randomly exposed to either vehicle (ethanol 0.4%) or TBT (1000 ng/kg) for 30 days. Body and fat pad masses, visceral fat morphology, lipid peroxidation, protein carbonylation, redox status markers, and catalase activity were evaluated. TBT promoted increased adiposity and visceral fat, with hypertrophic adipocytes, but did not alter body mass and subcutaneous fat. ROS production and lipid peroxidation were elevated in TBT group, as well as catalase protein expression and activity, although protein oxidation and glutathione peroxidase protein expression remained unchanged. In conclusion, this is the first study to demonstrate that subacute TBT administration leads to visceral adipose redox imbalance, with increased oxidative stress. This enlights the understanding of the metabolic toxic outcomes of continuous exposure to TBT in mammals.

3.
Reprod Toxicol ; 129: 108670, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032759

RESUMEN

Tributyltin (TBT) and mercury (Hg) are endocrine-disrupting chemicals that individually cause reproductive complications. However, the reproductive consequences of exposure to a mixture of TBT plus Hg are not well known. We hypothesized that exposure to a mixture of TBT plus Hg would alter hypothalamic-pituitary-gonadal (HPG) axis function. Female rats were exposed to this mixture daily for 15 days, after which chemical accumulation in the tissues, morphology, hormone levels, inflammation, fibrosis, and protein expression in the reproductive organs were assessed. Increases in tin (Sn) and Hg levels were detected in the serum, HPG axis, and uterus of TBT-Hg rats. TBT-Hg rats exhibited irregular estrous cycles. TBT-Hg rats showed an increase in gonadotropin-releasing hormone (GnRH) protein expression and follicle-stimulating hormone (FSH) levels and a reduction in luteinizing hormone (LH) levels. Reduced ovarian reserve, antral follicles, corpora lutea (CL) number, and estrogen levels and increased atretic and cystic follicles were found, suggesting that TBT-Hg exposure exacerbated premature ovarian insufficiency (POI) features. Furthermore, TBT-Hg rats exhibited increased ovarian mast cell numbers, expression of the inflammatory markers IL-6 and collagen deposition. Apoptosis and reduced gland number were observed in the uteri of TBT-Hg rats. A reduction in the number of pups/litter for 90 days was found in TBT-Hg rats, suggesting impaired fertility. Strong negative correlations were found between serum and ovarian Sn levels and ovarian Hg levels and ovarian reserve and CL number. Collectively, these data suggest that TBT plus Hg exposure leads to abnormalities in the HPG axis, exacerbating POI features and reducing fertility in female rats.

4.
Reprod Toxicol ; 128: 108635, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38936095

RESUMEN

Tributyltin (TBT) is an endocrine-disrupting chemical (EDC) related to reproductive dysfunctions. However, few studies have investigated the effects of TBT exposure on mammary gland development. Thus, we assessed whether subacute TBT exposure causes irregularities in mammary gland development. We administered TBT (100 and 1,000 ng/kg/day for 30 days) to female rats from postnatal day (PND) 25 to PND 55, and mammary gland development, morphology, inflammation, collagen deposition, and protein expression were evaluated. Abnormal mammary gland development was observed in both TBT groups. Specifically, TBT exposure reduced the number of terminal end buds (TEBs), type 1 (AB1) alveolar buds, and type 2 (AB2) alveolar buds. An increase in the lobule and differentiation (DF) 2 score was found in the mammary glands of TBT rats. TBT exposure increased mammary gland blood vessels, mast cell numbers, and collagen deposition. Additionally, both TBT rats exhibited intraductal hyperplasia and TEB-like structures. An increase in estrogen receptor alpha (ERα), progesterone receptor (PR), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) - positive cells was observed in the mammary glands of TBT rats. A strong negative correlation was observed between CYP19A1- positive cells and TEB number. In addition, CYP19A1 - positive cells were positively correlated with mammary gland TEB-like structure, ductal hyperplasia, inflammation, and collagen deposition. Thus, these data suggest that TBT exposure impairs mammary gland development through the modulation of CYP19A1 signaling pathways in female rats.

5.
Environ Toxicol ; 39(9): 4278-4297, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38712533

RESUMEN

Cadmium (Cd) is a heavy metal that acts as endocrine disrupting chemical (EDC). Few studies have investigated the effects of Cd exposure on metabolic dysfunctions, such as type 1 and 2 diabetes mellitus (T1DM and T2DM). Thus, we assessed whether subacute Cd exposure at occupational levels causes abnormalities in white adipose tissue (WAT), liver, pancreas, and skeletal muscle. We administered cadmium chloride (CdCl2) (100 ppm in drinking water for 30 days) to female rats and evaluated Cd levels in serum and metabolic organs, morphophysiology, inflammation, oxidative stress, fibrosis, and gene expression. High Cd levels were found in serum, WAT, liver, pancreas, and skeletal muscle. Cd-exposed rats showed low adiposity, dyslipidemia, insulin resistance, systemic inflammation, and oxidative stress compared to controls. Cd exposure reduced adipocyte size, hyperleptinemia, increased cholesterol levels, inflammation, apoptosis and fibrosis in WAT. Cd-exposed rats had increased liver cholesterol levels, insulin receptor beta (IRß) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1α) expression, karyomegaly, inflammation, and fibrosis. Cd exposure reduced insulin levels and pancreatic islet size and increased inflammation and fibrosis. Cd exposure reduced skeletal muscle fiber diameter and increased IR expression and inflammation. Finally, strong positive correlations were observed between serum, tissue Cd levels, abnormal morphology, tissue inflammation and fibrosis. Thus, these data suggest that subacute Cd exposure impairs WAT, liver, pancreas and skeletal muscle function, leading to T1DM and T2DM features and other complications in female rats.


Asunto(s)
Cadmio , Diabetes Mellitus Tipo 2 , Hígado , Animales , Femenino , Diabetes Mellitus Tipo 2/inducido químicamente , Ratas , Cadmio/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Diabetes Mellitus Tipo 1/inducido químicamente , Ratas Wistar , Páncreas/efectos de los fármacos , Páncreas/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Disruptores Endocrinos/toxicidad
6.
Anemia ; 2024: 7924015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596654

RESUMEN

SCD is a hereditary disorder caused by genetic mutation in the beta-globin gene, resulting in abnormal hemoglobin, HbS that forms sickle-shaped erythrocytes under hypoxia. Patients with SCD have endocrine disorders and it was described that 7% of these patients have clinical hypothyroidism. Recent studies have shown that mature erythrocytes possess TSH receptors. Thus, we aimed to assess the effects of TSH on SCD erythrocytes. The experiments were conducted using different concentrations of TSH (1, 2, 3, and 5 mIU/L). In HbS polymerization assay, erythrocytes were exposed to TSH in hypoxia to induce polymerization, and measurements were taken for 30 minutes. The deformability assay was made using Sephacryl-S 500 columns to separate deformable from nondeformable cells. Static adhesion test utilized thrombospondin to assess erythrocyte adhesion in the presence of TSH. TSH at all contractions were able to reduce polymerization of HbS and increase deformability. The static adhesion of erythrocytes at the lowest concentrations of 1 and 2 mIU/L were increased, but at higher contractions of 3 and 5 mIU/L, static adhesion was not modulated. The results suggest that TSH has potential involvement in the pathophysiology of sickle cell disease by inhibiting HbS polymerization, positively modulating deformability and impacting static adhesion to thrombospondin.

7.
Toxicol In Vitro ; 98: 105832, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653437

RESUMEN

Sickle cell disease (SCD) is a hereditary hemoglobinopathy, caused by a mutation at position 6 of the ß-globin chain and patients are frequently exposed to several blood transfusions in order to maintain physiological function. Transfusion blood bags are composed of PVC and phthalates (as DEHP) are often introduced to the material in order to confer malleability. In this sense, DEHP can easily elute to the blood and cause harmful effects. This study aimed to unravel DEHP effect on SCD patient's hemoglobin function. We found that HbS polymerization using whole erythrocytes is decreased by DEHP in ex vivo experiments and this effect might be mediated by the DEHP-VAL6 interaction, evaluated in silico. Isolated HbS exhibited less polymerization at low DEHP concentrations and increased polymerization rate at higher concentration. When analyzing the propensity to aggregate, HbS is more inclined to aggregate when compared to HbA due to the residue 6 mutation. Circular dichroism showed characteristic hemoglobin peaks for oxygenated HbS that are lost when oxygen is sequestered, and DEHP at higher concentration mildly recovers a peak close to the second hemoglobin one. Finally, by transmission electron microscopy we demonstrated that high DEHP concentration increased polymer formation with a more organized structure. These findings show for the first-time the beneficial effect of low-dose DEHP on HbS polymerization.


Asunto(s)
Anemia de Células Falciformes , Dietilhexil Ftalato , Eritrocitos , Hemoglobina Falciforme , Polimerizacion , Humanos , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Dietilhexil Ftalato/toxicidad , Simulación por Computador
8.
Environ Pollut ; 349: 123963, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621455

RESUMEN

Tributyltin (TBT) is the chemical substance commonly used worldwide to prevent biofouling of vessels. Due to its ability to bioaccumulate and biomagnify, even after being banned, significant concentrations of TBT can be detected in sediment, affecting marine and human life. Although studies have shown that direct exposure to TBT alters physiological parameters in mammals, the relationship between exposure to TBT during pregnancy and lactation, considered critical windows for metabolic programming, has not been fully elucidated. Our hypothesis is that offspring whose mothers were exposed to TBT during critical stages of development may exhibit dysfunctions in endocrine-metabolic parameters. We used pregnant Wistar rats that were divided into groups and received the following treatments from gestational day 7 until the end of lactation by intragastric gavage: vehicle (ethanol 0.01%; Control), low TBT dose (100 ng/kg of body weight (bw)/day; TBT100ng) and high TBT dose (1000 ng/kg bw/day; TBT1000ng). Dams and offspring at birth and weaning (21 days old) were studied. Maternal exposure to TBT promoted dose-dependent changes in dams. The findings for adiposity, milk composition and lipid profile were more pronounced in TBT100 ng dam; however, thyroid morphology was altered in TBT1000 ng dam. Female offspring were differentially affected by the dose of exposure. At birth, females in the TBT100ng group had low body weight, lower naso-anal length (NAL), and higher plasma T4, and at weaning, females in the TBT100ng group had lower insulin and leptin levels. Females in the TBT1000ng group had lower NAL at birth and lower leptinemia and weight of white adipose tissue at weaning. Male offspring from TBT groups showed high T3 at birth, without biometric alterations at birth or weaning. Despite these findings, both sexes exhibited dose-dependent morphological changes in the thyroid gland. Thus, maternal exposure to TBT constitutes an important route of contamination for both dams and offspring.


Asunto(s)
Lactancia , Exposición Materna , Efectos Tardíos de la Exposición Prenatal , Ratas Wistar , Glándula Tiroides , Compuestos de Trialquiltina , Animales , Femenino , Compuestos de Trialquiltina/toxicidad , Ratas , Embarazo , Masculino , Glándula Tiroides/efectos de los fármacos , Lactancia/efectos de los fármacos , Animales Recién Nacidos , Disruptores Endocrinos/toxicidad , Leche/química , Leche/metabolismo
9.
Mol Cell Endocrinol ; 586: 112203, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490633

RESUMEN

Microcystin (MC) is most common cyanobacterial toxin. Few studies have evaluated the MC effects on the hypothalamic-pituitary-gonadal (HPG) axis and metabolic function. In this study, we assessed whether MC exposure results in HPG axis and metabolic changes. Female rats were exposed to a single dose of MC at environmentally relevant levels (5, 20 and 40 µg/kg). After 24 h, we evaluated reproductive and metabolic parameters for 15 days. MC reduced the hypothalamic GnRH protein expression, increased the pituitary protein expression of GnRHr and IL-6. MC reduced LH levels and increased FSH levels. MC reduced the primary follicles, increased the corpora lutea, elevated levels of anti-Müllerian hormone (AMH) and progesterone, and decreased estrogen levels. MC increased ovarian VEGFr, LHr, AMH, ED1, IL-6 and Gp91-phox protein expression. MC increased uterine area and reduced endometrial gland number. A blunted estrogen-negative feedback was observed in MC rats after ovariectomy, with no changes in LH levels compared to intact MC rats. Therefore, these data suggest that a MC leads to abnormal HPG axis function in female rats.


Asunto(s)
Eje Hipotálamico-Pituitario-Gonadal , Microcistinas , Ratas , Femenino , Animales , Microcistinas/toxicidad , Interleucina-6/metabolismo , Ovario/metabolismo , Estrógenos , Hormona Liberadora de Gonadotropina/metabolismo
10.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894927

RESUMEN

Parabens are classified as endocrine-disrupting chemicals (EDCs) capable of interfering with the normal functioning of the thyroid, affecting the proper regulation of the biosynthesis of thyroid hormones (THs), which is controlled by the hypothalamic-pituitary-thyroid axis (HPT). Given the crucial role of these hormones in health and the growing evidence of diseases related to thyroid dysfunction, this review looks at the effects of paraben exposure on the thyroid. In this study, we considered research carried out in vitro and in vivo and epidemiological studies published between 1951 and 2023, which demonstrated an association between exposure to parabens and dysfunctions of the HPT axis. In humans, exposure to parabens increases thyroid-stimulating hormone (TSH) levels, while exposure decreases TSH levels in rodents. The effects on THs levels are also poorly described, as well as peripheral metabolism. Regardless, recent studies have shown different actions between different subtypes of parabens on the HPT axis, which allows us to speculate that the mechanism of action of these parabens is different. Furthermore, studies of exposure to parabens are more evident in women than in men. Therefore, future studies are needed to clarify the effects of exposure to parabens and their mechanisms of action on this axis.


Asunto(s)
Parabenos , Glándula Tiroides , Masculino , Humanos , Femenino , Glándula Tiroides/metabolismo , Parabenos/toxicidad , Hormonas Tiroideas/metabolismo , Hormonas/metabolismo , Tirotropina/metabolismo
11.
Toxics ; 11(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37624201

RESUMEN

Tributyltin (TBT) is an environmental contaminant present on all continents, including Antarctica, with a potent biocidal action. Its use began to be intensified during the 1960s. It was effectively banned in 2003 but remains in the environment to this day due to several factors that increase its half-life and its misuse despite the bans. In addition to the endocrine-disrupting effect of TBT, which may lead to imposex induction in some invertebrate species, there are several studies that demonstrate that TBT also has an immunotoxic effect. The immunotoxic effects that have been observed experimentally in vertebrates using in vitro and in vivo models involve different mechanisms; mainly, there are alterations in the expression and/or secretion of cytokines. In this review, we summarize and update the literature on the impacts of TBT on the immune system, and we discuss issues that still need to be explored to fill the knowledge gaps regarding the impact of this endocrine-disrupting chemical on immune system homeostasis.

12.
Cancers (Basel) ; 15(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37296979

RESUMEN

Atrx loss was recently ascertained as insufficient to drive pancreatic neuroendocrine tumour (PanNET) formation in mice islets. We have identified a preponderant role of Atrx in the endocrine dysfunction in a Rip-Cre;AtrxKO genetically engineered mouse model (GEMM). To validate the impact of a different Cre-driver line, we used similar methodologies and characterised the Pdx1-Cre;AtrxKO (P.AtrxKO) GEMM to search for PanNET formation and endocrine fitness disruption for a period of up to 24 months. Male and female mice presented different phenotypes. Compared to P.AtrxWT, P.AtrxHOM males were heavier during the entire study period, hyperglycaemic between 3 and 12 mo., and glucose intolerant only from 6 mo.; in contrast, P.AtrxHOM females started exhibiting increased weight gains later (after 6 mo.), but diabetes or glucose intolerance was detected by 3 mo. Overall, all studied mice were overweight or obese from early ages, which challenged the histopathological evaluation of the pancreas and liver, especially after 12 mo. Noteworthily, losing Atrx predisposed mice to an increase in intrapancreatic fatty infiltration (FI), peripancreatic fat deposition, and macrovesicular steatosis. As expected, no animal developed PanNETs. An obese diabetic GEMM of disrupted Atrx is presented as potentially useful for metabolic studies and as a putative candidate for inserting additional tumourigenic genetic events.

13.
Reprod Toxicol ; 119: 108410, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37211340

RESUMEN

We previously reported that female rats placed on a diet containing refined carbohydrates (HCD) resulted in obesity and reproductive abnormalities, such as high serum LH concentration and abnormal ovarian function. However, the impacts at the hypothalamic-pituitary (HP) function, specifically regarding pathways linked to reproductive axis modulation are unknown. In this study, we assessed whether subacute feeding with HCD results in abnormal reproductive control in the HP axis. Female rats were fed with HCD for 15 days and reproductive HP axis morphophysiology was assessed. HCD reduced hypothalamic mRNA expression (Kiss1, Lepr, and Amhr2) and increased pituitary LHß+ cells. These changes likely contribute to the increase in serum LH concentration observed in HCD. Blunted estrogen negative feedback was observed in HCD, with increased kisspeptin protein expression in the arcuate nucleus of the hypothalamus (ARH), lower LHß+ cells and LH concentration in ovariectomized (OVX)+HCD rats. Thus, these data suggest that HCD feeding led to female abnormal reproductive control of HP axis.


Asunto(s)
Hipotálamo , Obesidad , Ratas , Femenino , Animales , Hipotálamo/metabolismo , Obesidad/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Dieta , Carbohidratos , Kisspeptinas/genética , Kisspeptinas/metabolismo
14.
Can J Physiol Pharmacol ; 101(12): 642-651, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821840

RESUMEN

The effects of endothelin-1 (ET-1) on erythrocytes from sickle cell disease (SCD) patients have been described, but mechanisms of ET-1 regarding primary erythrocyte functions remain unknown. ET-1 is a vasoconstrictor peptide produced by endothelial cells, and the expression of ET-1 is increased in SCD. The present study used ex vivo experiments with sickle cell erythrocytes, ET-1, and bosentan, a dual antagonist of ETA and ETB receptors. We performed a hemoglobin S (HbS) polymerization assay with three concentrations of ET-1 (1, 20, and 50 pg/mL) and bosentan (100 nmol/L). ET-1 increased HbS polymerization at all concentrations, and this effect was suppressed by bosentan. For the deformability assay, red blood cells (RBCs) were incubated on a Sephacryl column with the same concentrations of ET-1 and bosentan. ET-1 decreased deformability, and this effect was reversed by bosentan. To observe erythrocyte adhesion, ET-1 and bosentan were incubated with RBCs in thrombospondin-coated 96-well plate, which demonstrated that ET-1 decreased adhesion but that bosentan enhanced adhesion. We also assessed erythrocyte apoptosis and observed decreased eryptosis induced by ET-1, and these effects were inhibited bosentan. Thus, these findings demonstrated that ET-1 modulates HbS polymerization, erythrocyte deformability, adhesion to thrombospondin, and eryptosis, and these effects were suppressed or enhanced by bosentan.


Asunto(s)
Anemia de Células Falciformes , Endotelina-1 , Humanos , Bosentán/farmacología , Endotelina-1/metabolismo , Células Endoteliales/metabolismo , Polimerizacion , Sulfonamidas/farmacología , Eritrocitos/metabolismo , Anemia de Células Falciformes/tratamiento farmacológico , Deformación Eritrocítica , Trombospondinas , Antagonistas de los Receptores de Endotelina/farmacología , Receptores de Endotelina/metabolismo , Endotelinas
15.
Toxicol Lett ; 376: 26-38, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638932

RESUMEN

Tributyltin (TBT) is an obesogenic endocrine disrupting chemical (EDC) linked with several metabolic complications. Brown adipose tissue (BAT) is the principal site for thermogenesis, making it a potential target for obesity management and metabolic disease. However, few studies have evaluated TBT effect on BAT function. In this investigation, we assessed whether subacute (15 days) and low dose of TBT exposure (100 ng/kg/day) results in abnormal BAT morphophysiology in adult male rats. Body temperature, BAT morphology, inflammation, oxidative stress, collagen deposition and BAT metabolic gene expression markers were assessed in room temperature (Room, ∼24 ºC) and after cold tolerance test (Cold, ∼4 ºC) conditions. A reduction in body temperature was observed in both Room and Cold conditions in TBT rats, suggesting abnormal BAT thermogenic function. Changes in BAT morphology were observed in TBT rats, with an increase in BAT lipid accumulation, an increase in BAT unilocular adipocyte number and a decrease in BAT multilocular adipocyte number in Room condition. All these parameters were opposite in Cold condition TBT rats, leading to a borderline increase in BAT UCP1 protein expression. An increase in BAT mast cell number was observed in TBT rats in Room condition. An increase in ED1 protein expression (macrophage marker) was observed in TBT rats in Cold condition. Oxidative stress and collagen deposition increased in both Room and Cold conditions in TBT rats. TBT exposure caused a borderline increase in BAT COL1A1 protein expression in Cold condition. Further, strong negative correlations were observed between body temperature and BAT lipid accumulation, and BAT lipid accumulation and multilocular adipocyte number. Thus, these data suggest that TBT exposure impaired BAT morphophysiology through impacts on lipid accumulation, inflammation, fibrosis and oxidative stress in male rats.


Asunto(s)
Tejido Adiposo Pardo , Obesidad , Ratas , Masculino , Animales , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Inflamación/metabolismo , Colágeno/metabolismo , Lípidos
16.
J Periodontal Res ; 58(2): 283-295, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36575324

RESUMEN

BACKGROUND AND OBJECTIVES: Periodontitis is a highly prevalent disease in psychiatric patients, including those undergoing symptomatic treatment with second-generation antipsychotics. Some of these drugs, such as clozapine (CLO) and olanzapine (OLA), have prominent metabolic effects such as weight gain, hyperglycemia, and dyslipidemia, which are risk factors for periodontitis. In addition to the metabolic effects, there are reports of changes in salivary flow, gingival bleeding, and caries. In this context, we aimed to evaluate if the metabolic effects of OLA and CLO alter periodontal parameters in an animal model of periodontitis without the environmental and psychosocial biases inherent to human diseases. METHODS: In the first set of experiments, male and female adult Wistar rats received oral administration of CLO, OLA, or vehicle for 45 days. They were evaluated for body mass composition and weight gain, blood glucose parameters (fasting and glucose tolerance and insulin resistance tests), and lipid profile (HDL, total cholesterol, and triglycerides). In a second set of experiments, the same measurements were performed in female rats exposed to the antipsychotics for 45 days and ligature-induced periodontitis on the 30th day of treatment. Macroscopic measurements of exposed roots, microtomography in the furcation region of the first molar, and histological evaluation of the region between the first and second molars were evaluated to assess bone loss. Additionally, gingival measurements of myeloperoxidase activity and pro-inflammatory cytokine TNF-α were made. RESULTS: Only females exposed to OLA had more significant weight gain than controls. They also exhibited differences in glucose metabolism. Ligature-induced periodontitis produced intense bone retraction without changing the density of the remaining structures. The bone loss was even higher in rats with periodontitis treated with OLA or CLO and was accompanied by a local increase in TNF-α caused by CLO. These animals, however, did not exhibit the same metabolic impairments observed for animals without periodontitis. CONCLUSION: The use of clozapine and olanzapine may be a risk factor for periodontal disease, independent of systemic metabolic alterations.


Asunto(s)
Antipsicóticos , Enfermedades Óseas Metabólicas , Clozapina , Periodontitis , Humanos , Adulto , Ratas , Masculino , Femenino , Animales , Antipsicóticos/efectos adversos , Clozapina/efectos adversos , Olanzapina/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Wistar , Periodontitis/complicaciones , Enfermedades Óseas Metabólicas/inducido químicamente , Enfermedades Óseas Metabólicas/complicaciones , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Aumento de Peso
17.
Environ Res ; 218: 114869, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460069

RESUMEN

INTRODUCTION: Endocrine disrupting chemicals (EDCs) are exogenous substances recognised as relevant tumourigenic chemicals. Studies show that even EDCs which were long abolished are still contributing to the increasing incidence of neoplasia. AIM: To investigate the association between human exposure to EDCs and the risk of endocrine-related tumours: breast, prostate, thyroid, uterus, testis, and ovary. METHODS: A systematic review using PubMed, Scopus, and Embase was conducted, searching for original observational studies published between 1980 and 2020, approaching EDCs exposure and endocrine tumourigenic risk in humans. We comprised neoplasia of six endocrine organs. We included all the studies on EDCs reporting tumour odds ratio, risk ratio, or hazard ratio. Study levels of confidence and risk of bias were accessed applying accredited guidelines. Human-made accidents and natural EDCs were not considered in the present study. RESULTS: Our search returned 3271 papers. After duplicate removal and screening, only 237 papers were included (corresponding to 268 records). EDCs were grouped from the most frequently (pesticides) to the least frequently studied (salts). The most tumourigenic EDC groups were phthalates (63%), heavy metals (54%), particulate matter (47%), and pesticides (46%). Pesticides group comprised the highest number of retrieved studies (n = 133). Increased neoplasia risk was found in 43-67% of the studies, with a lower value for ovary (43%) and a higher value for thyroid (67%). CONCLUSIONS: The innovative nature of our review comes from including human studies of six endocrine-related neoplasia aiming to understand the contribution of specific EDCs groups to each organ's tumourigenesis. Thyroid was the organ presenting the highest cancer risk after EDC exposure which may explain the increasing thyroid cancer incidence. However, detailed and controlled works reporting the effects of EDCs are scarce, probably justifying conflicting results. Multinational and multicentric human studies with biochemical analysis are needed to achieve stronger and concordant evidence.


Asunto(s)
Disruptores Endocrinos , Metales Pesados , Plaguicidas , Masculino , Femenino , Humanos , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/análisis , Sistema Endocrino , Plaguicidas/toxicidad , Testículo/química
18.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36551653

RESUMEN

Anaplastic thyroid carcinoma (ATC) is a rare, but aggressive, carcinoma derived from follicular cells. While conventional treatments may improve patients' survival, the lethality remains high. Therefore, there is an urgent need for more effective ATC treatments. Cardiotonic steroids, such as ouabain, have been shown to have therapeutic potential in cancer treatment. Thus, we aimed to evaluate ouabain's effects in human anaplastic thyroid cells. For this, 8505C cells were cultured in the presence or absence of ouabain. Viability, cell death, cell cycle, colony formation and migratory ability were evaluated in ouabain-treated and control 8505C cells. The expression of differentiation and epithelial-to-mesenchymal transition (EMT) markers, as well as IL-6, TGFb1 and their respective receptors were also quantified in these same cells. Our results showed that ouabain in vitro decreased the number of viable 8505C cells, possibly due to an inhibition of proliferation. A reduction in migration was also observed in ouabain-treated 8505C cells. In contrast, decreased mRNA levels of PAX8 and TTF1 differentiation markers and increased levels of the N-cadherin EMT marker, as well as IL-6 and TGFb1, were found in ouabain-treated 8505C cells. In short, ouabain may have anti-proliferative and anti-migratory effect on 8505C cells, but maintains an aggressive and undifferentiated profile.

19.
Life Sci ; 311(Pt A): 121136, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36349603

RESUMEN

AIMS: Endoplasmic reticulum (ER) stress poses a new pathological mechanism for metabolic-associated fatty liver disease (MAFLD). MAFLD treatment has encompassed renin-angiotensin system (RAS) blockers and aerobic exercise training, but their association with hepatic ER stress is not well known. Therefore, we aimed to compare the effects of hepatic RAS modulation by enalapril and/or aerobic exercise training over ER stress in MAFLD caused by a diet-induced obesity model. MAIN METHODS: C57BL/6 mice were fed a standard-chow (CON, n = 10) or a high-fat (HF, n = 40) diet for 8 weeks. HF group was then randomly divided into: HF (n = 10), HF + Enalapril (EN, n = 10), HF + Aerobic exercise training (AET, n = 10), and HF + Enalapril+Aerobic exercise training (EN + AET, n = 10) for 8 more weeks. Body mass (BM) and glucose profile were evaluated. In the liver, ACE and ACE2 activity, morphology, lipid profile, and protein expression of ER stress and metabolic markers were assessed. KEY FINDINGS: Both enalapril and aerobic exercise training provided comparable efficacy in improving diet-induced MAFLD through modulation of RAS and ER stress, but the latter was more efficient in improving ER stress, liver damage and metabolism. SIGNIFICANCE: This is the first study to evaluate pharmacological (enalapril) and non-pharmacological (aerobic exercise training) RAS modulators associated with ER stress in a diet-induced MAFLD model.


Asunto(s)
Enalapril , Estrés del Retículo Endoplásmico , Animales , Ratones , Biomarcadores/metabolismo , Dieta , Enalapril/farmacología , Ratones Endogámicos C57BL
20.
Cell Biochem Biophys ; 80(4): 711-721, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36175813

RESUMEN

Angiotensin II (Ang II) regulates blood volume and stimulates erythropoiesis through AT1 (ATR1) and AT2 (ATR2) receptors, found in multiple tissues, including erythrocytes. Sickle cell disease (SCD) patients present altered Ang II levels. Hemoglobin S polymerization, deformability and phosphatidylserine translocation are important features of mature erythrocytes, therefore, our hypothesis is Ang II affects these parameters and, if it does, what would be the influence of AT1R and AT2R on these effects. A polymerization assay (PA), deformability, and annexin V binding were performed in SCD erythrocytes samples adding Ang II, ATR1 antagonist (losartan or eprosartan), and ATR2 antagonist (PD123319). Through the PA test, we observed a dose-dependent polymerization inhibition effect when comparing Ang II to control. Losartan did not affect the level or the rate of Ang II inhibition, while PD123319 showed an increased level of protection against polymerization, and eprosartan brought levels back to control. Ang II was able to reduce the translocation of phosphatidylserine from the inner to the outer leaflet, a marker of eryptosis, in the presence of PD123319. Also, ATR1 showed a positive effect increasing deformability. Our data shows that ATR1 is important for maintenance of erythrocyte physiological function in SCD and for prolonging its life.


Asunto(s)
Anemia de Células Falciformes , Losartán , Acrilatos , Angiotensina II/metabolismo , Angiotensina II/farmacología , Anexina A5 , Eritrocitos/metabolismo , Hemoglobina Falciforme/metabolismo , Humanos , Imidazoles , Losartán/farmacología , Fosfatidilserinas , Polimerizacion , Receptor de Angiotensina Tipo 1/metabolismo , Tiofenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA