Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Pharm ; 21(4): 1848-1860, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466817

RESUMEN

Liposomal carrier systems have emerged as a promising technology for pulmonary drug delivery. This study focuses on two selected liposomal systems, namely, dipalmitoylphosphatidylcholine stabilized by phosphatidic acid and cholesterol (DPPC-PA-Chol) and dipalmitoylphosphatidylcholine stabilized by polyethylene glycol and cholesterol (DPPC-PEG-Chol). First, the research investigates the stability of these liposomal systems during the atomization process using different kinds of nebulizers (air-jet, vibrating mesh, and ultrasonic). The study further explores the aerodynamic particle size distribution of the aerosol generated by the nebulizers. The nebulizer that demonstrated optimal stability and particle size was selected for more detailed investigation, including Andersen cascade impactor measurements, an assessment of the influence of flow rate and breathing profiles on aerosol particle size, and an in vitro deposition study on a realistic replica of the upper airways. The most suitable combination of a nebulizer and liposomal system was DPPC-PA-Chol nebulized by a Pari LC Sprint Star in terms of stability and particle size. The influence of the inspiration flow rate on the particle size was not very strong but was not negligible either (decrease of Dv50 by 1.34 µm with the flow rate increase from 8 to 60 L/min). A similar effect was observed for realistic transient inhalation. According to the in vitro deposition measurement, approximately 90% and 70% of the aerosol penetrated downstream of the trachea using the stationary flow rate and the realistic breathing profile, respectively. These data provide an image of the potential applicability of liposomal carrier systems for nebulizer therapy. Regional lung drug deposition is patient-specific; therefore, deposition results might vary for different airway geometries. However, deposition measurement with realistic boundary conditions (airway geometry, breathing profile) brings a more realistic image of the drug delivery by the selected technology. Our results show how much data from cascade impactor testing or estimates from the fine fraction concept differ from those of a more realistic case.


Asunto(s)
Broncodilatadores , Tráquea , Humanos , 1,2-Dipalmitoilfosfatidilcolina , Nebulizadores y Vaporizadores , Liposomas , Aerosoles , Administración por Inhalación , Sistemas de Liberación de Medicamentos , Colesterol , Tamaño de la Partícula , Diseño de Equipo
2.
Comput Biol Med ; 170: 107994, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308867

RESUMEN

The numerical simulation of inhaled aerosols in medical research starts to play a crucial role in understanding local deposition within the respiratory tract, a feat often unattainable experimentally. Research on children is particularly challenging due to the limited availability of in vivo data and the inherent morphological intricacies. CFD solvers based on Finite Volume Methods (FVM) have been widely employed to solve the flow field in such studies. Recently, Lattice Boltzmann Methods (LBM), a mesoscopic approach, have gained prominence, especially for their scalability on High-Performance Computers. This study endeavours to compare the effectiveness of LBM and FVM in simulating particulate flows within a child's respiratory tract, supporting research related to particle deposition and medication delivery using LBM. Considering a 5-year-old child's airway model at a steady inspiratory flow, the results are compared with in vitro experiments. Notably, both LBM and FVM exhibit favourable agreement with experimental data for the mean velocity field and the turbulence intensity. For particle deposition, both numerical methods yield comparable results, aligning well with in vitro experiments across a particle size range of 0.1-20 µm. Discrepancies are identified in the upper airways and trachea, indicating a lower deposition fraction than in the experiment. Nonetheless, both LBM and FVM offer invaluable insights into particle behaviour for different sizes, which are not easily achievable experimentally. In terms of practical implications, the findings of this study hold significance for respiratory medicine and drug delivery systems - potential health impacts, targeted drug delivery strategies or optimisation of respiratory therapies.


Asunto(s)
Hidrodinámica , Tráquea , Humanos , Preescolar , Simulación por Computador , Tráquea/anatomía & histología , Aerosoles , Tamaño de la Partícula
3.
Discov Nano ; 18(1): 38, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-37382704

RESUMEN

In this study, novel Trojan particles were engineered for direct delivery of doxorubicin (DOX) and miR-34a as model drugs to the lungs to raise local drug concentration, decrease pulmonary clearance, increase lung drug deposition, reduce systemic side effects, and overcome multi-drug resistance. For this purpose, targeted polyelectrolyte nanoparticles (tPENs) developed with layer-by-layer polymers (i.e., chitosan, dextran sulfate, and mannose-g-polyethyleneimine) were spray dried into a multiple-excipient (i.e., chitosan, leucine, and mannitol). The resulting nanoparticles were first characterized in terms of size, morphology, in vitro DOX release, cellular internalization, and in vitro cytotoxicity. tPENs showed comparable cellular uptake levels to PENs in A549 cells and no significant cytotoxicity on their metabolic activity. Co-loaded DOX/miR-34a showed a greater cytotoxicity effect than DOX-loaded tPENs and free drugs, which was confirmed by Actin staining. Thereafter, nano-in-microparticles were studied through size, morphology, aerosolization efficiency, residual moisture content, and in vitro DOX release. It was demonstrated that tPENs were successfully incorporated into microspheres with adequate emitted dose and fine particle fraction but low mass median aerodynamic diameter for deposition into the deep lung. The dry powder formulations also demonstrated a sustained DOX release at both pH values of 6.8 and 7.4.

4.
Int J Pharm ; 634: 122695, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36758881

RESUMEN

This contribution is focused on the preparation of a liposomal drug delivery system of erlotinib resisting the nebulization process that could be used for local treatment of non-small-cell lung cancer. Liposomes with different compositions were formulated to reveal their influence on the encapsulation efficiency of erlotinib. An encapsulation efficiency higher than 98 % was achieved for all vesicles containing phosphatidic acid (d ≈ 100 nm, ζ = - 43 mV) even in the presence of polyethylene glycol (d ≈ 150 nm, ζ = - 17 mV) which decreased this value in all other formulas. The three most promising formulations were nebulized by two air-jet and two vibrating mesh nebulizers, and the aerosol deposition in lungs was calculated by tools of computational fluid and particle mechanics. According to the numerical simulations and measurements of liposomal stability, air-jet nebulizers generated larger portion of the aerosol able to penetrate deeper into the lungs, but the delivery is likely to be more efficient when the formulation is administered by Aerogen Solo vibrating mesh nebulizer because of a higher portion of intact vesicles after the nebulization. The leakage of encapsulated drug from liposomes nebulized by this nebulizer was lower than 2 % for all chosen vesicles.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Administración por Inhalación , Liposomas , Clorhidrato de Erlotinib , Aerosoles y Gotitas Respiratorias , Nebulizadores y Vaporizadores , Sistemas de Liberación de Medicamentos , Pulmón , Tamaño de la Partícula , Broncodilatadores
5.
Mater Sci Eng C Mater Biol Appl ; 126: 112117, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082934

RESUMEN

Controlled pulmonary drug delivery systems employing non-spherical particles as drug carriers attract considerable attention nowadays. Such anisotropic morphologies may travel deeper into the lung airways, thus enabling the efficient accumulation of therapeutic compounds at the point of interest and subsequently their sustained release. This study focuses on the fabrication of electrospun superparamagnetic polymer-based biodegradable microrods consisting of poly(l-lactide) (PLLA), polyethylene oxide (PEO) and oleic acid-coated magnetite nanoparticles (OA·Fe3O4). The production of magnetite-free (0% wt. OA·Fe3O4) and magnetite-loaded (50% and 70% wt. Fe3O4) microrods was realized upon subjecting the as-prepared electrospun fibers to UV irradiation, followed by sonication. Moreover, drug-loaded microrods were fabricated incorporating methyl 4-hydroxybenzoate (MHB) as a model pharmaceutical compound and the drug release profile from both, the drug-loaded membranes and the corresponding microrods was investigated in aqueous media. In addition, the magnetic properties of the produced materials were exploited for remote induction of hyperthermia under AC magnetic field, while the possibility to reduce transport losses and enhance the targeted delivery to lower airways by manipulation of the airborne microrods by DC magnetic field was also demonstrated.


Asunto(s)
Calefacción , Nanopartículas de Magnetita , Sistemas de Liberación de Medicamentos , Pulmón , Fenómenos Magnéticos , Magnetismo
6.
Colloids Surf B Biointerfaces ; 204: 111793, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33932888

RESUMEN

In this study, three different molecules (cholesterol, phosphatidic acid, and polyethylene glycol) were used for the stabilization of liposomes during the nebulization process. The purpose of this article is to answer the question of whether the change in the composition of liposomes affected the parameters of generated aerosol and whether the nebulization process affected observed properties of liposomes. Firstly, liposomes with different composition were prepared and their properties were checked by dynamic and electrophoretic light scattering. The membrane properties were measured by fluorescence spectroscopy - especially generalized polarization (Laurdan) and anisotropy (Diphenylhexatriene). The same characteristic of liposomes was measured after the nebulization by vibrating mesh nebulizer. Cholesterol was capable of liposome stabilization because of increased membrane fluidity. The membrane properties of the outer and inner parts were not influenced by the nebulization process. Electrostatic stabilization was successful for the lowest concentration of phosphatidic acid, but after the nebulization process the hydration of the membrane outer part was changed. Higher amount of PEG needs to be added for successful steric stabilization. The nebulization process of the two lowest concentrations of PEG slightly influenced immobilized water and the rigidity of inner part of the membrane (especially around the phase transition temperature).


Asunto(s)
Liposomas , Mallas Quirúrgicas , Aerosoles , Nebulizadores y Vaporizadores , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA