Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Bone Rep ; 21: 101752, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38590390

RESUMEN

High-resolution peripheral quantitative computed tomography (HR-pQCT) based micro-finite element (µFE) analysis allows accurate prediction of stiffness and ultimate load of standardised (∼1 cm) distal radius and tibia sections. An alternative homogenized finite element method (hFE) was recently validated to compute the ultimate load of larger (∼2 cm) distal radius sections that include Colles' fracture sites. Since the mechanical integrity of the weight-bearing distal tibia is gaining clinical interest, it has been shown that the same properties can be used to predict the strength of both distal segments of the radius and the tibia. Despite the capacity of hFE to predict structural properties of distal segments of the radius and the tibia, the limitations of such homogenization scheme remain unclear. Therefore, the objective of this study is to build a complete mechanical data set of the compressive behavior of distal segments of the tibia and to compare quantitatively the structural properties with the hFE predictions. As a further aim, it is intended to verify whether hFE is also able to capture the post-yield strain localisation or fracture zones in such a bone section, despite the absence of strain softening in the constitutive model. Twenty-five fresh-frozen distal parts of tibias of human donors were used in this study. Sections were cut corresponding to an in-house triple-stack protocol HR-pQCT scan, lapped, and scanned using micro computed tomography (µCT). The sections were tested in compression until failure, unloaded and scanned again in µCT. Volumetric bone mineral density (vBMD) and bone mineral content (BMC) were correlated to compression test results. hFE analysis was performed in order to compare computational predictions (stiffness, yield load and plastic deformation field pattern) with the compressive experiment. Namely, strain localization was assessed based on digital volume correlation (DVC) results and qualitatively compared to hFE predictions by comparing mid-slices patterns. Bone mineral content (BMC) showed a good correlation with stiffness (R2 = 0.92) and yield (R2 = 0.88). Structural parameters also showed good agreement between the experiment and hFE for both stiffness (R2 = 0.96, slope = 1.05 with 95 % CI [0.97, 1.14]) and yield (R2 = 0.95, slope = 1.04 [0.94, 1.13]). The qualitative comparison between hFE and DVC strain localization patterns allowed the classification of the samples into 3 categories: bad (15 sections), semi (8), and good agreement (2). The good correlations between BMC or hFE and experiment for structural parameters were similar to those obtained previously for the distal part of the radius. The failure zones determined by hFE corresponded to registration only in 8 % of the cases. We attribute these discrepancies to local elastic/plastic buckling effects that are not captured by the continuum-based FE approach exempt from strain softening. A way to improve strain localization hFE prediction would be to use longer distal segments with intact cortical shells, as done for the radius. To conclude, the used hFE scheme captures the elastic and yield response of the tibia sections reliably but not the subsequent failure process.

2.
J Orthop Res ; 42(8): 1762-1770, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38483000

RESUMEN

Measuring the healing status of a bone fracture is important to determine the clinical care a patient receives. Implantable devices can directly and continuously assess the healing status of fracture fixation constructs, while subject-specific virtual biomechanical tests can noninvasively determine callus structural integrity at single time points. Despite their potential for objectification, both methods are not yet integrated into clinical practice with further evidence of their benefits required. This study correlated continuous data from an implantable sensor assessing healing status through implant load monitoring with computer tomography (CT) based longitudinal finite element (FE) simulations in a large animal model. Eight sheep were part of a previous preclinical study utilizing a tibial osteotomy model and equipped with such a sensor. Sensor signal was collected over several months, and CT scans were acquired at six interim time points. For each scan, two FE analyses were performed: a virtual torsional rigidity test of the bone and a model of the bone-implant construct with the sensor. The longitudinal simulation results were compared to the sensor data at corresponding time points and a cohort-specific empirical healing rule was employed. Healing status predicted by both in silico simulations correlated significantly with the sensor data at corresponding time points and correctly identified a delayed and a nonunion in the cohort. The methodology is readily translatable with the potential to be applied to further preclinical or clinical cohorts to find generalizable healing criteria. Virtual mechanical tests can objectively measure fracture healing progressing using longitudinal CT scans.


Asunto(s)
Análisis de Elementos Finitos , Curación de Fractura , Fracturas de la Tibia , Tomografía Computarizada por Rayos X , Animales , Fracturas de la Tibia/diagnóstico por imagen , Fracturas de la Tibia/cirugía , Fracturas de la Tibia/fisiopatología , Ovinos , Femenino , Tibia/diagnóstico por imagen
3.
Front Bioeng Biotechnol ; 11: 1268787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107614

RESUMEN

Background: Plate osteosynthesis is a widely used technique for bone fracture fixation; however, complications such as plate bending remain a significant clinical concern. A better understanding of the failure mechanisms behind plate osteosynthesis is crucial for improving treatment outcomes. This study aimed to develop finite element (FE) models to predict plate bending failure and validate these against in vitro experiments using literature-based and experimentally determined implant material properties. Methods: Plate fixations of seven cadaveric tibia shaft fractures were tested to failure in a biomechanical setup with various implant configurations. FE models of the bone-implant constructs were developed from computed tomography (CT) scans. Elasto-plastic implant material properties were assigned using either literature data or the experimentally derived data. The predictive capability of these two FE modelling approaches was assessed based on the experimental ground truth. Results: The FE simulations provided quantitatively correct prediction of the in vitro cadaveric experiments in terms of construct stiffness [concordance correlation coefficient (CCC) = 0.97, standard error of estimate (SEE) = 23.66, relative standard error (RSE) = 10.3%], yield load (CCC = 0.97, SEE = 41.21N, RSE = 7.7%), and maximum force (CCC = 0.96, SEE = 35.04, RSE = 9.3%), when including the experimentally determined material properties. Literature-based properties led to inferior accuracies for both stiffness (CCC = 0.92, SEE = 27.62, RSE = 19.6%), yield load (CCC = 0.83, SEE = 46.53N, RSE = 21.4%), and maximum force (CCC = 0.86, SEE = 57.71, RSE = 14.4%). Conclusion: The validated FE model allows for accurate prediction of plate osteosynthesis construct behaviour beyond the elastic regime but only when using experimentally determined implant material properties. Literature-based material properties led to inferior predictability. These validated models have the potential to be utilized for assessing the loads leading to plastic deformation in vivo, as well as aiding in preoperative planning and postoperative rehabilitation protocols.

4.
BMC Musculoskelet Disord ; 24(1): 886, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964215

RESUMEN

BACKGROUND: Long bone defects resulting from primary trauma or secondary to debridement of fracture-related infection (FRI) remain a major clinical challenge. One approach often used is the induced membrane technique (IMT). The effectiveness of the IMT in infected versus non-infected settings remains to be definitively established. In this study we present a new rabbit humerus model and compare the IMT approach between animals with prior infection and non-infected equivalents. METHODS: A 5 mm defect was created in the humerus of New Zealand White rabbits (n = 53) and fixed with a 2.5 mm stainless steel plate. In the non-infected groups, the defect was either left empty (n = 6) or treated using the IMT procedure (PMMA spacer for 3 weeks, n = 6). Additionally, both approaches were applied in animals that were inoculated with Staphylococcus aureus 4 weeks prior to defect creation (n = 5 and n = 6, respectively). At the first and second revision surgeries, infected and necrotic tissues were debrided and processed for bacteriological quantification. In the IMT groups, the PMMA spacer was removed 3 weeks post implantation and replaced with a beta-tricalcium phosphate scaffold and bone healing observed for a further 10 weeks. Infected groups also received systemic antibiotic therapy. The differences in bone healing between the groups were evaluated radiographically using a modification of the radiographic union score for tibial fractures (RUST) and by semiquantitative histopathology on Giemsa-Eosin-stained sections. RESULTS: The presence of S. aureus infection at revision surgery was required for inclusion to the second stage. At the second revision surgery all collected samples were culture negative confirming successful treatment. In the empty defect group, bone healing was increased in the previously infected animals compared with non-infected controls as revealed by radiography with significantly higher RUST values at 6 weeks (p = 0.0281) and at the end of the study (p = 0.0411) and by histopathology with increased cortical bridging (80% and 100% in cis and trans cortical bridging in infected animals compared to 17% and 67% in the non-infected animals). With the IMT approach, both infected and non-infected animals had positive healing assessments. CONCLUSION: We successfully developed an in vivo model of bone defect healing with IMT with and without infection. Bone defects can heal after an infection with even better outcomes compared to the non-infected setting, although in both cases, the IMT achieved better healing.


Asunto(s)
Curación de Fractura , Fracturas de la Tibia , Conejos , Animales , Polimetil Metacrilato/farmacología , Polimetil Metacrilato/uso terapéutico , Staphylococcus aureus , Fracturas de la Tibia/cirugía , Húmero/diagnóstico por imagen , Húmero/cirugía
5.
Sci Rep ; 13(1): 9339, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291148

RESUMEN

Traumatic bone fractures are often debilitating injuries that may require surgical fixation to ensure sufficient healing. Currently, the most frequently used osteosynthesis materials are metal-based; however, in certain cases, such as complex comminuted osteoporotic fractures, they may not provide the best solution due to their rigid and non-customizable nature. In phalanx fractures in particular, metal plates have been shown to induce joint stiffness and soft tissue adhesions. A new osteosynthesis method using a light curable polymer composite has been developed. This method has demonstrated itself to be a versatile solution that can be shaped by surgeons in situ and has been shown to induce no soft tissue adhesions. In this study, the biomechanical performance of AdhFix was compared to conventional metal plates. The osteosyntheses were tested in seven different groups with varying loading modality (bending and torsion), osteotomy gap size, and fixation type and size in a sheep phalanx model. AdhFix demonstrated statistically higher stiffnesses in torsion (64.64 ± 9.27 and 114.08 ± 20.98 Nmm/° vs. 33.88 ± 3.10 Nmm/°) and in reduced fractures in bending (13.70 ± 2.75 Nm/mm vs. 8.69 ± 1.16 Nmm/°), while the metal plates were stiffer in unreduced fractures (7.44 ± 1.75 Nm/mm vs. 2.70 ± 0.72 Nmm/°). The metal plates withstood equivalent or significantly higher torques in torsion (534.28 ± 25.74 Nmm vs. 614.10 ± 118.44 and 414.82 ± 70.98 Nmm) and significantly higher bending moments (19.51 ± 2.24 and 22.72 ± 2.68 Nm vs. 5.38 ± 0.73 and 1.22 ± 0.30 Nm). This study illustrated that the AdhFix platform is a viable, customizable solution that is comparable to the mechanical properties of traditional metal plates within the range of physiological loading values reported in literature.


Asunto(s)
Fijación Interna de Fracturas , Fracturas Osteoporóticas , Animales , Ovinos , Adherencias Tisulares , Fijación Interna de Fracturas/métodos , Placas Óseas , Osteotomía , Fenómenos Biomecánicos
6.
J Clin Med ; 12(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36836132

RESUMEN

(1) Background: Unstable meta-diaphyseal tibial fractures represent a heterogeneous group of injuries. Recently, good clinical results have been reported when applying a technique of externalized locked plating in appropriate cases, highlighting its advantage in terms of less additional tissue injury compared with conventional methods of fracture fixation. The aims of this prospective clinical cohort study were, firstly, to investigate the biomechanical and clinical feasibility and, secondly, to evaluate the clinical and functional outcomes of single-stage externalized locked plating for treatment of unstable, proximal (intra- and extra-articular) and distal (extra-articular), meta-diaphyseal tibial fractures. (2) Methods: Patients, who matched the inclusion criteria of sustaining a high-energy unstable meta-diaphyseal tibial fracture, were identified prospectively for single-stage externalized locked plating at a single trauma hospital in the period from April 2013 to December 2022. (3) Results: Eighteen patients were included in the study. Average follow-up was 21.4 ± 12.3 months, with 94% of the fractures healing without complications. The healing time was 21.1 ± 4.6 weeks, being significantly shorter for patients with proximal extra- versus intra-articular meta-diaphyseal tibial fractures, p = 0.04. Good and excellent functional outcomes in terms of HSS and AOFAS scores, and knee and ankle joints range of motion were observed among all patients, with no registered implant breakage, deep infection, and non-union. (4) Conclusions: Single-stage externalized locked plating of unstable meta-diaphyseal tibial fractures provides adequate stability of fixation with promising clinical results and represents an attractive alternative to the conventional methods of external fixation when inclusion criteria and rehabilitation protocol are strictly followed. Further experimental studies and randomized multicentric clinical trials with larger series of patients are necessary to pave the way of its use in clinical practice.

7.
Front Bioeng Biotechnol ; 10: 919721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814016

RESUMEN

Joint-preserving surgical treatment of complex unstable proximal humerus fractures remains challenging, with high failure rates even following state-of-the-art locked plating. Enhancement of implants could help improve outcomes. By overcoming limitations of conventional biomechanical testing, finite element (FE) analysis enables design optimization but requires stringent validation. This study aimed to computationally enhance the design of an existing locking plate to provide superior fixation stability and evaluate the benefit experimentally in a matched-pair fashion. Further aims were the evaluation of instrumentation accuracy and its potential influence on the specimen-specific predictive ability of FE. Screw trajectories of an existing commercial plate were adjusted to reduce the predicted cyclic cut-out failure risk and define the enhanced (EH) implant design based on results of a previous parametric FE study using 19 left proximal humerus models (Set A). Superiority of EH versus the original (OG) design was tested using nine pairs of human proximal humeri (N = 18, Set B). Specimen-specific CT-based virtual preoperative planning defined osteotomies replicating a complex 3-part fracture and fixation with a locking plate using six screws. Bone specimens were prepared, osteotomized and instrumented according to the preoperative plan via a standardized procedure utilizing 3D-printed guides. Cut-out failure of OG and EH implant designs was compared in paired groups with both FE analysis and cyclic biomechanical testing. The computationally enhanced implant configuration achieved significantly more cycles to cut-out failure compared to the standard OG design (p < 0.01), confirming the significantly lower peri-implant bone strain predicted by FE for the EH versus OG groups (p < 0.001). The magnitude of instrumentation inaccuracies was small but had a significant effect on the predicted failure risk (p < 0.01). The sample-specific FE predictions strongly correlated with the experimental results (R2 = 0.70) when incorporating instrumentation inaccuracies. These findings demonstrate the power and validity of FE simulations in improving implant designs towards superior fixation stability of proximal humerus fractures. Computational optimization could be performed involving further implant features and help decrease failure rates. The results underline the importance of accurate surgical execution of implant fixations and the need for high consistency in validation studies.

8.
J Trauma Acute Care Surg ; 92(3): 574-580, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34686638

RESUMEN

BACKGROUND: The high morbidity following surgical interventions on the chest wall because of large incisions often prevents surgeons from operative rib fracture treatment. Minimally invasive approaches to the intrathoracic side of the rib could allow for smaller incisions with lower morbidity while maintaining stability of fixation. The aim of this study was to explore the biomechanical competence of intrathoracic versus extrathoracic plating in a human cadaveric rib fracture model and investigate the effect of plating using two versus three screws per fracture fragment. METHODS: Twenty pairs of fresh-frozen human cadaveric ribs from elderly female donors aged 82.4 ± 7.8 years were used. First, the stiffness of each native rib was calculated via nondestructive (2 N-5 N) biomechanical testing under two loading conditions: ramped two-point bending and combined ramped tensile bending with torsional loading. Second, the ribs were fractured under three-point bending with their intrathoracic side put under tensile stress. Third, specimens were assigned to four groups (n = 10) for either intrathoracic or extrathoracic plating with two or three screws per fragment. Following instrumentation, all ribs were dynamically tested over 400,000 cycles under combined sinusoidal tensile bending with torsional loading (2 N-5 N at 3 Hz). Finally, all specimens were destructively tested under ramped two-point bending. RESULTS: Following instrumentation and cyclic testing, significantly higher construct stiffness was observed for intrathoracic vs. extrathoracic plating under anatomical loading conditions (p ≤ 0.03). No significant differences were detected for implant subsidence after plating with two or three screws per fragment (p ≥ 0.20). CONCLUSION: This study demonstrates significantly higher construct stiffness following intrathoracic over extrathoracic plating, thus indicating superior plate support of the former. In the clinical context, using only two instead of three screws per fragment not only could maintain stability of fixation but also decrease surgery time and costs, and allow for smaller incisions with lower morbidity. LEVEL OF EVIDENCE: Therapeutic/Care Management; Level V.


Asunto(s)
Placas Óseas , Fijación Interna de Fracturas/instrumentación , Fracturas de las Costillas/cirugía , Anciano de 80 o más Años , Fenómenos Biomecánicos , Tornillos Óseos , Cadáver , Femenino , Humanos
9.
J Shoulder Elbow Surg ; 31(1): 192-200, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34298147

RESUMEN

BACKGROUND: Optimal treatment options for proximal humerus fractures (PHFs) are still debated because of persisting high fixation failure rates experienced with locking plates. Optimization of the implants and development of patient-specific designs may help improve the primary fixation stability of PHFs and reduce the rate of mechanical failures. Optimizing the screw orientations in locking plates has shown promising results; however, the potential benefit of subject-specific designs has not been explored yet. The purpose of this study was to evaluate by means of finite element (FE) analyses whether subject-specific optimization of the screw orientations in a fixed-angle locking plate can reduce the predicted cutout failure risk in unstable 3-part fractures. METHODS: FE models of 19 low-density proximal humeri were generated from high-resolution computed tomographic images using a previously developed and validated computational osteosynthesis framework. The specimens were virtually osteotomized to simulate unstable malreduced 3-part fractures and fixed with the PHILOS plates using 6 proximal locking screws. The average principal compressive strain in cylindrical bone regions around the screw tips-a biomechanically validated surrogate for the risk of cyclic screw cutout failure-was defined as the main outcome measure. The angles of the 6 proximal locking screws were optimized via parametric analysis for each humerus individually, resulting in subject-specific screw orientations (SSO). The average peri-implant strains of the SSO were statistically compared with the previously reported cohort-specific (CSO) and original PHILOS screw orientations (PSO) for females vs. males. RESULTS: The optimized SSO significantly reduced the peri-screw bone strain vs. CSO (6.8% ± 4.0%, P = .006) and PSO (25.24% ± 7.93%, P < .001), indicating lower cutout risk for subject-specific configurations. The benefits of SSO vs. PSO were significantly higher for women than men. CONCLUSION: The findings of this study suggest that subject-specific optimization of the locking screw orientations could lead to lower cutout risk and improved PHF fixation. These computer simulation results require biomechanical and clinical corroboration. Further studies are needed to evaluate whether the potential benefit in stability could justify the increased efforts related to implementation of individualized implants. Nevertheless, computational exploration of the biomechanical factors influencing the outcome of fracture fixations could help better understand the fixation failures and reduce their incidence.


Asunto(s)
Fracturas del Hombro , Fenómenos Biomecánicos , Placas Óseas , Simulación por Computador , Femenino , Fijación Interna de Fracturas , Humanos , Húmero , Masculino , Fracturas del Hombro/diagnóstico por imagen , Fracturas del Hombro/cirugía
10.
Curr Osteoporos Rep ; 19(4): 403-416, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34185266

RESUMEN

PURPOSE OF REVIEW: Fracture fixation aims to provide stability and promote healing, but remains challenging in unstable and osteoporotic fractures with increased risk of construct failure and nonunion. The first part of this article reviews the clinical motivation behind finite element analysis of fracture fixation, its strengths and weaknesses, how models are developed and validated, and how outputs are typically interpreted. The second part reviews recent modeling studies of the femur and proximal humerus, areas with particular relevance to fragility fractures. RECENT FINDINGS: There is some consensus in the literature around how certain modeling aspects are pragmatically formulated, including bone and implant geometries, meshing, material properties, interactions, and loads and boundary conditions. Studies most often focus on predicted implant stress, bone strain surrounding screws, or interfragmentary displacements. However, most models are not rigorously validated. With refined modeling methods, improved validation efforts, and large-scale systematic analyses, finite element analysis is poised to advance the understanding of fracture fixation failure, enable optimization of implant designs, and improve surgical guidance.


Asunto(s)
Fracturas del Fémur/terapia , Análisis de Elementos Finitos , Fijación de Fractura/métodos , Fracturas del Húmero/terapia , Fracturas Osteoporóticas/terapia , Femenino , Humanos
11.
J Biomech ; 117: 110268, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33529942

RESUMEN

Locked plating of proximal humerus fractures (PHF) is associated with high failure rates (15-37%). Secondary screw perforation is a prominent mode of failure for PHF and typically requires reoperation. The anatomical fracture reduction is an essential factor to prevent fixation failure. However, recent studies indicate that the risk of secondary screw perforation may increase if the articular surface is perforated during predrilling of the screw boreholes (overdrilling). This study aimed to determine whether overdrilling increases the risk of secondary screw perforation in unstable PHF. Nine pairs of human cadaveric proximal humeri were osteotomized to simulate a malreduced and highly unstable 3-part fracture (AO/OTA 11 B1.1), followed by their assignment to two study groups for overdrilling or accurate predrilling in paired design, and fixation with a locking plate. Overdrilling was defined by drilling the calcar screw's boreholes through the articular surface. All humeri were cyclically loaded to screw perforation failure. Number of cycles to initial screw loosening and final perforation failure were analysed. The accurately predrilled group revealed a significantly higher number of cycles to both initial screw loosening (p < 0.01) and final screw perforation failure (p = 0.02), compared to the overdrilled one. This is the first study reporting that drilling to the correct depth significantly increases endurance until screw perforation failure during cyclic loading after locked plating in a highly unstable PHF model. Prevention of overdrilling the boreholes could help reduce failure rates of locked plating. Future work should investigate the prevalence and consequences of overdrilling in clinics.


Asunto(s)
Fracturas del Hombro , Fenómenos Biomecánicos , Placas Óseas/efectos adversos , Tornillos Óseos/efectos adversos , Cadáver , Fijación Interna de Fracturas/efectos adversos , Humanos , Fracturas del Hombro/cirugía
12.
J Biomech ; 115: 110109, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33257010

RESUMEN

Intramedullary femoral nails provide an ideal mechanical axis for periprosthetic fracture fixation. Slotted nails allow a connection to a total knee arthroplasty (TKA) stem. This study aims to compare implant and construct stiffness, interfragmentary movement and cycles to failure between an antegrade slotted femoral nail construct docked to a TKA stem and a distal femoral locking plate in a human periprosthetic femoral fracture model. In eight pairs of fresh-frozen human femora with stalked TKA, a 10 mm transverse osteotomy gap was set simulating a Rorabeck type II, Su type I fracture. The femora were pairwise instrumented with either an antegrade slotted nail coupled to the prosthesis stem, or a locking plate. Cyclic testing with a progressively increasing physiologic loading profile was performed at 2 Hz until catastrophic construct failure. Relative movement at the osteotomy site was monitored by means of optical motion tracking. In addition, four-point bending implant stiffness, torsional implant stiffness and frictional fit of the stem-nail connection were investigated via separate non-destructive tests. Intramedullary nails exhibited significantly higher four-point bending and significantly lower torsional implant stiffness than plates, P < 0.01. Increasing difference between nail and stem diameters decreased frictional fit at the stem-nail junction. Nail constructs provided significantly higher initial axial bending stiffness and cycles to failure (200 ± 83 N/mm; 16'871 ± 5'227) compared to plate constructs (93 ± 35 N/mm; 7'562 ± 1'064), P = 0.01. Relative axial translation at osteotomy level after 2'500 cycles was significantly smaller for nail fixation (0.14 ± 0.11 mm) compared with plate fixation (0.99 ± 0.20 mm), P < 0.01. From a biomechanical perspective, the docking nail concept offers higher initial and secondary stability under dynamic axial loading versus plating in TKA periprosthetic fracture fixation.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Fracturas del Fémur , Fijación Intramedular de Fracturas , Fracturas Periprotésicas , Fenómenos Biomecánicos , Placas Óseas , Fracturas del Fémur/cirugía , Fijación Interna de Fracturas , Humanos , Fracturas Periprotésicas/cirugía
13.
Injury ; 52(1): 60-65, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32972726

RESUMEN

INTRODUCTION: Pertrochanteric femur fracture fixation with use of cephalomedullary nails (CMN) has become increasingly popular in recent past. Known complications after fracture consolidation include peri­implant fractures following the use of both short and long nails, with fracture lines around the tip of the nail or through the interlocking screw holes, resulting in secondary midshaft or supracondylar femur fractures, respectively. Limited research exists to help the surgeon decide on the use of short versus long nails, while both have their benefits. The aim of this biomechanical study is to investigate in direct comparison one of the newest generations short and long CMNs in a human anatomical model, in terms of construct stability and generation of secondary fracture pattern following pertrochanteric fracture consolidation. METHODS: Eight intact human anatomical femur pairs were assigned to two groups of eight specimens each for nailing using short or long CMNs. Each specimen was first biomechanically preloaded at 1 Hz over 2000 cycles in superimposed synchronous axial compression to 1800 N and internal rotation to 11.5 Nm. Following, internal rotation to failure was applied over an arc of 90° within one second under 700 N axial load. Torsional stiffness as well as torque at failure, angle at failure, and energy to failure were evaluated. Fracture patterns were analyzed. RESULTS: Outcomes in the study groups with short and long nails were 9.7 ± 2.4 Nm/° and 10.2 ± 2.9 Nm/° for torsional stiffness, 119.8 ± 37.2 Nm and 128±46.7 Nm for torque at failure, 13.5 ± 3.5° and 13.4 ± 2.6° for angle at failure, and 887.5 ± 416.9 Nm° and 928.3 ± 461.0 Nm° for energy to failure, respectively, with no significant differences between them, p ≥ 0.17. Fractures through the distal locking screw holes occurred in 5 and 6 femora instrumented with short and long nails, respectively. Fractures through the lateral entry site of the head element were detected in 3 specimens within each group. For short nails, fractures through the distal shaft region, not interfacing with the implant, were detected in 3 specimens. CONCLUSION: From a biomechanical perspective, the risk of secondary peri­implant fracture after intramedullary fixation of pertrochanteric fractures is similar when using short or long CMN. Moreover, for both nail versions the fracture pattern does not unexceptionally involve the distal locking screw hole.


Asunto(s)
Fracturas del Fémur , Fijación Intramedular de Fracturas , Fracturas de Cadera , Fracturas Periprotésicas , Fenómenos Biomecánicos , Clavos Ortopédicos , Fracturas del Fémur/cirugía , Fracturas de Cadera/cirugía , Humanos
14.
Injury ; 52(1): 32-36, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33004202

RESUMEN

Stephan Perren's contributions to the understanding and application of the principles of bone pathobiology, healing, and fracture fixation to clinical care remain as a lasting legacy of a great creative mind. Less well appreciated perhaps were his important contributions to the dissemination and practical application of those principles through the use of technology as applied to the learning environment. This paper describes and pays tribute to a series of initiatives in which Perren was a leading mentor and collaborator in the development of methods and instruments through which the principles of bone mechano-pathobiology could be translated through active learning environments into the practical world of clinical musculoskeletal traumatology.


Asunto(s)
Creatividad , Fijación de Fractura , Huesos , Humanos
15.
Clin Biomech (Bristol, Avon) ; 78: 105097, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32623297

RESUMEN

BACKGROUND: Management of proximal humerus fractures is challenging, especially in elderly. Locking plating is a common surgical treatment option. The Proximal Humerus Internal Locking System (plate-A) has shown to lower complication rates compared to conventional plates, but is associated with impingement risk, which could be avoided using Peri-articular Proximal Humerus Plate (plate-B). Nevertheless, biomechanical performance and optimal screw configuration of plate-B is unknown. The aim of this study was to evaluate different screw configurations of plate-B and compare with plate-A using finite element analyses. METHODS: Twenty-six proximal humerus models were osteotomised to create unstable three-part fractures, fixed with either of the two plates, and tested under three anatomical loading conditions using a previous established and validated finite element simulation framework. Various clinically relevant screw configurations were investigated for both plates and compared based on the predicted peri-implant bone strain, being a validated surrogate of cyclic cut-out failure. FINDINGS: Besides increasing the number of screws, the placement of the posterior screws in combination with the calcar screw in the plate-B significantly decreased the predicted failure risk. Generally, plate-A had a lower predicted failure risk than plate-B. INTERPRETATION: The posterior and calcar screws may be prioritized in plate-B. Compared to plate-A, the more distal positioning, less purchase in the posterior aspect and a smaller screw spread due to not fitting of the most distal calcar screw in most investigated subjects led to a significantly higher predicted failure risk for most plate-B configurations. The findings of the simulations study require clinical corroboration.


Asunto(s)
Tornillos Óseos , Análisis de Elementos Finitos , Fijación Interna de Fracturas/instrumentación , Fracturas del Hombro/cirugía , Anciano , Fenómenos Biomecánicos , Placas Óseas , Simulación por Computador , Femenino , Humanos , Masculino
16.
J Orthop Res ; 37(12): 2625-2633, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31350928

RESUMEN

Secondary perforation of screws into the joint surface is a commonly reported mechanical fixation failure mode in locked plating of proximal humerus fractures (PHF). This study investigated the influence that screws tip to joint distance (TJD) has on the biomechanical risk of secondary screw perforation and the stability of PHF. Ten pairs of cadaveric proximal humeri with a wide range of bone mineral density were used. Each specimen was osteotomized and instrumented with the PHILOS plate, simulating a highly unstable 3-part fracture. Bones were randomized into a long screw group (LSG) with 4 mm TJD, or a short screw group (SSG) with 8 mm TJD. A custom biomechanical setup was used to test the samples to failure cyclically with a constant valley load and an increasing ramp. The number of cycles to the initial screw loosening event was significantly higher for the LSG (mean ± standard deviation: 17,532 ± 6,458) compared with the SSG (11,102 ± 5,440) (p < 0.01). The mode of failure during testing was lateral-inferior displacement combined with varus collapse, with calcar screws perforating first. The number of cycles to failure event for LSG (27,849 ± 5,648) was not significantly different compared with SSG (28,782 ± 7,307) (p = 0.50). Screws that purchase closer to the joint had better initial stability and resistance against loosening. Placing longer screws, within limits dictated by the surgical guide, is expected to decrease the risk of secondary perforation failures in unstable PHF. These findings require clinical corroboration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2625-2633, 2019.


Asunto(s)
Placas Óseas , Tornillos Óseos , Fijación Interna de Fracturas/efectos adversos , Fracturas del Hombro/cirugía , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Densidad Ósea , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA