Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
STAR Protoc ; 3(2): 101300, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35479118

RESUMEN

The gold standard protocol for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection detection remains reverse transcription quantitative polymerase chain reaction (qRT-PCR), which detects viral RNA more sensitively than any other approach. Here, we present Homebrew, a low-cost protocol to extract RNA using widely available reagents. Homebrew is as sensitive as commercially available RNA extraction kits. Homebrew allows for sample pooling and can be adapted for automation in high-throughput settings. For complete details on the use and execution of this protocol, please refer to Page et al. (2022).


Asunto(s)
COVID-19 , Ácidos Nucleicos , Automatización , COVID-19/diagnóstico , Humanos , ARN Viral/genética , SARS-CoV-2/genética
2.
Cell Rep Methods ; 2(3): 100186, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35262039

RESUMEN

Management of COVID-19 and other epidemics requires large-scale diagnostic testing. The gold standard for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains reverse transcription quantitative PCR (qRT-PCR) analysis, which detects viral RNA more sensitively than any other method. However, the resource use and supply-chain requirements of RT-PCR have continued to challenge diagnostic laboratories worldwide. Here, we establish and characterize a low-cost method to detect SARS-CoV-2 in clinical combined nose and throat swabs, allowing for automation in high-throughput settings. This method inactivates virus material with sodium dodecylsulfate (SDS) and uses silicon dioxide as the RNA-binding matrix in combination with sodium chloride (NaCl) and isopropanol. With similar sensitivity for SARS-CoV-2 viral targets but a fraction of time and reagent expenditure compared with commercial kits, our method also enables sample pooling without loss of sensitivity. We suggest that this method will facilitate more economical widespread testing, particularly in resource-limited settings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Transcripción Reversa
3.
PLoS One ; 16(9): e0256813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34525109

RESUMEN

There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP. RNA extraction methods provided similar results, with Beckman performing better with our primer-probe combinations. Luna proved most sensitive although overall the three reagents did not show significant differences. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrated that heat treatment of nasopharyngeal swabs at 70°C for 10 or 30 min, or 90°C for 10 or 30 min (both original variant and B 1.1.7) inactivated SARS-CoV-2 employing plaque assays, and had minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable in settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Calor , ARN Viral/genética , SARS-CoV-2/genética , Inactivación de Virus , COVID-19/epidemiología , COVID-19/virología , Epidemias/prevención & control , Humanos , Nasofaringe/virología , Juego de Reactivos para Diagnóstico , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2/fisiología , Sensibilidad y Especificidad , Manejo de Especímenes/métodos , Flujo de Trabajo
4.
medRxiv ; 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33851184

RESUMEN

There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna ® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP (PHE guidelines). All RNA extraction methods provided similar results. FastVirus and Luna proved most sensitive. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrate that treatment of nasopharyngeal swabs with 70 degrees for 10 or 30 min, or 90 degrees for 10 or 30 min (both original variant and B 1.1.7) inactivates SARS-CoV-2 employing plaque assays, and that it has minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable to settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/ .

5.
Nat Commun ; 9(1): 1783, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725044

RESUMEN

Small nucleolar RNA (snoRNA) are conserved and essential non-coding RNA that are transcribed by RNA Polymerase II (Pol II). Two snoRNA classes, formerly distinguished by their structure and ribonucleoprotein composition, act as guide RNA to target RNA such as ribosomal RNA, and thereby introduce specific modifications. We have studied the 5'end processing of individually transcribed snoRNA in S. cerevisiae to define their role in snoRNA biogenesis and functionality. Here we show that pre-snoRNA processing by the endonuclease Rnt1 occurs co-transcriptionally with removal of the m7G cap facilitating the formation of box C/D snoRNA. Failure of this process causes aberrant 3'end processing and mislocalization of snoRNA to the cytoplasm. Consequently, Rnt1-dependent 5'end processing of box C/D snoRNA is critical for snoRNA-dependent methylation of ribosomal RNA. Our results reveal that the 5'end processing of box C/D snoRNA defines their distinct pathway of maturation.


Asunto(s)
Núcleo Celular/metabolismo , ARN de Hongos/genética , ARN Nucleolar Pequeño/metabolismo , Saccharomyces cerevisiae/genética , Citoplasma/metabolismo , Metilación , Caperuzas de ARN , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Mol Cell ; 70(2): 312-326.e7, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656924

RESUMEN

Many non-coding transcripts (ncRNA) generated by RNA polymerase II in S. cerevisiae are terminated by the Nrd1-Nab3-Sen1 complex. However, Sen1 helicase levels are surprisingly low compared with Nrd1 and Nab3, raising questions regarding how ncRNA can be terminated in an efficient and timely manner. We show that Sen1 levels increase during the S and G2 phases of the cell cycle, leading to increased termination activity of NNS. Overexpression of Sen1 or failure to modulate its abundance by ubiquitin-proteasome-mediated degradation greatly decreases cell fitness. Sen1 toxicity is suppressed by mutations in other termination factors, and NET-seq analysis shows that its overexpression leads to a decrease in ncRNA production and altered mRNA termination. We conclude that Sen1 levels are carefully regulated to prevent aberrant termination. We suggest that ncRNA levels and coding gene transcription termination are modulated by Sen1 to fulfill critical cell cycle-specific functions.


Asunto(s)
ADN Helicasas/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Regulación Fúngica de la Expresión Génica , ARN Helicasas/metabolismo , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , ARN no Traducido/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Terminación de la Transcripción Genética , ADN Helicasas/genética , Viabilidad Microbiana , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , ARN Helicasas/genética , ARN de Hongos/genética , ARN Mensajero/genética , ARN no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
7.
Biochim Biophys Acta ; 1829(1): 174-85, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23085255

RESUMEN

Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3' end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.


Asunto(s)
ARN Polimerasa II/metabolismo , Saccharomycetales/genética , Terminación de la Transcripción Genética/fisiología , Animales , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Humanos , Modelos Biológicos , ARN Polimerasa II/química , ARN Polimerasa II/fisiología , ARN no Traducido/metabolismo , ARN no Traducido/fisiología , Saccharomycetales/metabolismo
8.
Science ; 338(6107): 671-5, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23019609

RESUMEN

Eukaryotic genomes are extensively transcribed, forming both messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). ncRNAs made by RNA polymerase II often initiate from bidirectional promoters (nucleosome-depleted chromatin) that synthesize mRNA and ncRNA in opposite directions. We demonstrate that, by adopting a gene-loop conformation, actively transcribed mRNA encoding genes restrict divergent transcription of ncRNAs. Because gene-loop formation depends on a protein factor (Ssu72) that coassociates with both the promoter and the terminator, the inactivation of Ssu72 leads to increased synthesis of promoter-associated divergent ncRNAs, referred to as Ssu72-restricted transcripts (SRTs). Similarly, inactivation of individual gene loops by gene mutation enhances SRT synthesis. We demonstrate that gene-loop conformation enforces transcriptional directionality on otherwise bidirectional promoters.


Asunto(s)
Genes Fúngicos , ARN Mensajero/genética , ARN no Traducido/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Genoma Fúngico , Mutación , Conformación de Ácido Nucleico , Fosfoproteínas Fosfatasas/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Estabilidad del ARN , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
9.
Mol Cell ; 41(1): 21-32, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21211720

RESUMEN

Sen1 of S. cerevisiae is a known component of the NRD complex implicated in transcription termination of nonpolyadenylated as well as some polyadenylated RNA polymerase II transcripts. We now show that Sen1 helicase possesses a wider function by restricting the occurrence of RNA:DNA hybrids that may naturally form during transcription, when nascent RNA hybridizes to DNA prior to its packaging into RNA protein complexes. These hybrids displace the nontranscribed strand and create R loop structures. Loss of Sen1 results in transient R loop accumulation and so elicits transcription-associated recombination. SEN1 genetically interacts with DNA repair genes, suggesting that R loop resolution requires proteins involved in homologous recombination. Based on these findings, we propose that R loop formation is a frequent event during transcription and a key function of Sen1 is to prevent their accumulation and associated genome instability.


Asunto(s)
ADN Helicasas/fisiología , Inestabilidad Genómica , ARN Helicasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Transcripción Genética , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Mol Cell ; 36(1): 88-98, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19818712

RESUMEN

Transcription termination of RNA polymerase II (Pol II) on protein-coding genes in S. cerevisiae relies on pA site recognition by 3' end processing factors. Here we demonstrate the existence of two alternative termination mechanisms that rescue polymerases failing to disengage from the template at pA sites. One of these fail-safe mechanisms is mediated by the NRD complex, similar to termination of short noncoding genes. The other termination mechanism is mediated by Rnt1 cleavage of the nascent transcript. Both fail-safe termination mechanisms trigger degradation of readthrough transcripts by the exosome. However, Rnt1-mediated termination can also enhance the usage of weak pA signals and thereby generate functional mRNA. We propose that these alternative Pol II termination pathways serve the dual function of avoiding transcription interference and promoting rapid removal of aberrant transcripts.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , Ribonucleasa III/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Regiones Terminadoras Genéticas/fisiología , Transcripción Genética/fisiología , Región de Flanqueo 3'/fisiología , Aciltransferasas/genética , Sitios de Unión/genética , ADN/metabolismo , ADN Helicasas/genética , Exorribonucleasas/genética , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación/fisiología , Plásmidos/genética , Plásmidos/metabolismo , Unión Proteica/fisiología , ARN Helicasas/genética , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Curr Biol ; 15(10): 974-9, 2005 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-15916956

RESUMEN

Seven small nuclear RNAs of the Sm class are encoded by Herpesvirus saimiri (HVS), a gamma Herpesvirus that causes aggressive T cell leukemias and lymphomas in New World primates and efficiently transforms T cells in vitro. The Herpesvirus saimiri U RNAs (HSURs) are the most abundant viral transcripts in HVS-transformed, latently infected T cells but are not required for viral replication or transformation in vitro. We have compared marmoset T cells transformed with wild-type or a mutant HVS lacking the most highly conserved HSURs, HSURs 1 and 2. Microarray and Northern analyses reveal that HSUR 1 and 2 expression correlates with significant increases in a small number of host mRNAs, including the T cell-receptor beta and gamma chains, the T cell and natural killer (NK) cell-surface receptors CD52 and DAP10, and intracellular proteins--SKAP55, granulysin, and NKG7--linked to T cell and NK cell activation. Upregulation of three of these transcripts was rescued after transduction of deletion-mutant-HVS-transformed cells with a lentiviral vector carrying HSURs 1 and 2. These changes indicate an unexpected role for the HSURs in regulating a remarkably defined and physiologically relevant set of host targets involved in the activation of virally transformed T cells during latency.


Asunto(s)
Genoma Viral , Herpesvirus Saimiriino 2/metabolismo , Activación de Linfocitos/genética , ARN Nuclear Pequeño/metabolismo , Linfocitos T/fisiología , Regulación hacia Arriba/genética , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antígenos de Neoplasias/metabolismo , Emparejamiento Base , Northern Blotting , Western Blotting , Antígeno CD52 , Callithrix , Línea Celular Tumoral , Citometría de Flujo , Vectores Genéticos , Glicoproteínas/metabolismo , Herpesvirus Saimiriino 2/genética , Lentivirus , Activación de Linfocitos/fisiología , Proteínas de la Membrana/metabolismo , Análisis por Micromatrices , Proteínas Oncogénicas Virales/metabolismo , ARN Nuclear Pequeño/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Inmunológicos/metabolismo , Transducción Genética
13.
Mol Cell Biol ; 24(10): 4522-33, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15121869

RESUMEN

Herpesvirus saimiri (HVS) encodes seven Sm-class small nuclear RNAs, called HSURs (for Herpesvirus saimiri U RNAs), that are abundantly expressed in HVS-transformed, latently infected marmoset T cells but are of unknown function. HSURs 1, 2, and 5 have highly conserved 5'-end sequences containing the AUUUA pentamer characteristic of AU-rich elements (AREs) that regulate the stability of many host mRNAs, including those encoding most proto-oncogenes and cytokines. To test whether the ARE-containing HSURs act to sequester host proteins that regulate the decay of these mRNAs, we demonstrate their in vivo interaction with the ARE-binding proteins hnRNP D and HuR in HVS-transformed T cells using a new cross-linking assay. Comprehensive Northern and microarray analyses revealed, however, that the levels of endogenous ARE-containing mRNAs are not altered in T cells latently infected with HVS mutants lacking HSURs 1 and 2. HSUR 1 binds the destabilizing ARE-binding protein tristetraprolin induced following activation of HVS-transformed T cells, but even in such stimulated cells, the levels of host ARE-containing mRNAs are not altered by deletion of HSURs 1 and 2. Instead, HSUR 1 itself is degraded by an ARE-dependent pathway in HVS-transformed T cells, suggesting that HVS may take advantage of the host ARE-mediated mRNA decay pathway to regulate HSUR expression. This is the first example of posttranscriptional regulation of the expression of an Sm small nuclear RNA.


Asunto(s)
Herpesvirus Saimiriino 2/genética , Herpesvirus Saimiriino 2/metabolismo , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Linfocitos T/metabolismo , Linfocitos T/virología , Animales , Antígenos de Superficie/metabolismo , Composición de Base , Secuencia de Bases , Callithrix , Línea Celular , Transformación Celular Viral , Proteínas ELAV , Proteína 1 Similar a ELAV , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Técnicas In Vitro , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Unión Proteica , ARN Nuclear Pequeño/química , ARN Viral/química , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA