Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biomedicines ; 12(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38790979

RESUMEN

The current knowledge on pathogenic mechanisms in amyotrophic lateral sclerosis (ALS) has widely been derived from studies with cell and animal models bearing ALS-linked genetic mutations. However, it remains unclear to what extent these disease models are of relevance to sporadic ALS. Few years ago, we reported that the cerebrospinal fluid (CSF) from sporadic ALS patients contains toxic factors for disease transmission in mice via chronic intracerebroventricular (i.c.v.) infusion. Thus a 14-day i.c.v. infusion of pooled CSF samples from ALS cases in mice provoked motor impairment as well as ALS-like pathological features. This offers a unique paradigm to test therapeutics in the context of sporadic ALS disease. Here, we tested a new Withaferin-A analog (IMS-088) inhibitor of NF-κB that was found recently to mitigate disease phenotypes in mouse models of familial disease expressing TDP-43 mutant. Our results show that oral intake of IMS-088 ameliorated motor performance of mice infused with ALS-CSF and it alleviated pathological changes including TDP-43 proteinopathy, neurofilament disorganization, and neuroinflammation. Moreover, CSF infusion experiments were carried out with transgenic mice having neuronal expression of tagged ribosomal protein (hNfL-RFP mice), which allowed immunoprecipitation of neuronal ribosomes for analysis by mass spectrometry of the translational peptide signatures. The results indicate that treatment with IMS-088 prevented many proteomic alterations associated with exposure to ALS-CSF involving pathways related to cytoskeletal changes, inflammation, metabolic dysfunction, mitochondria, UPS, and autophagy dysfunction. The effective disease-modifying effects of this drug in a mouse model based on i.c.v. infusion of ALS-CSF suggest that the NF-κB signaling pathway represents a compelling therapeutic target for sporadic ALS.

2.
Acta Neuropathol Commun ; 8(1): 65, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381112

RESUMEN

To test the hypothesis that the cerebrospinal fluid (CSF) could provide a spreading route for pathogenesis of amyotrophic lateral sclerosis (ALS), we have examined the effects of intraventricular infusion during 2 weeks of pooled CSF samples from sporadic ALS patients or control CSF samples into transgenic mice expressing human TDP43WT which do not develop pathological phenotypes. Infusion of ALS-CSF, but not of control CSF, triggered motor and cognitive dysfunction, as well as ALS-like pathological changes including TDP43 proteinopathy, neurofilament disorganization and neuroinflammation. In addition, the neuron-specific translational profiles from peptide analyses of immunoprecipitated ribosomes revealed dysregulation of multiple protein networks in response to ALS-CSF altering cytoskeletal organization, vesicle trafficking, mitochondrial function, and cell metabolism. With normal mice, similar ALS-CSF infusion induced mild motor dysfunction but without significant TDP43 pathology in spinal neurons. We conclude that the CSF from sporadic ALS contains factors that can transmit and disseminate disease including TDP43 proteinopathy into appropriate recipient animal model expressing human TDP43. These findings open new research avenues for the discovery of etiogenic factors for sporadic ALS and for the testing of drugs aiming to neutralize the ALS-CSF toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Encéfalo/patología , Líquido Cefalorraquídeo , Anciano , Animales , Femenino , Humanos , Infusiones Intraventriculares , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad
3.
Bio Protoc ; 10(2): e3501, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33654728

RESUMEN

Investigations into glial biology have contributed substantially in understanding the physiology and pathology of the nervous system. However, intricacies of the neuron-glial and glial-glial interactions in vivo present significant challenges while delineating the individual cell-type contributions, thus making the in vitro techniques exceedingly relevant to study glial biology. However, obtaining optimal yield along with high purity has been challenging for microglial cultures. Here we present a simple protocol to establish enriched astroglial as well as microglial cultures from the neonatal rat spinal cord. This method results in highly enriched astroglial and microglial cultures with maximal yield.

4.
J Neuroinflammation ; 14(1): 251, 2017 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-29246232

RESUMEN

BACKGROUND: Microglial cell-associated neuroinflammation is considered as a potential contributor to the pathophysiology of sporadic amyotrophic lateral sclerosis. However, the specific role of microglia in the disease pathogenesis remains to be elucidated. METHODS: We studied the activation profiles of the microglial cultures exposed to the cerebrospinal fluid from these patients which recapitulates the neurodegeneration seen in sporadic amyotrophic lateral sclerosis. This was done by investigating the morphological and functional changes including the expression levels of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), TNF-α, IL-6, IFN-γ, IL-10, inducible nitric oxide synthase (iNOS), arginase, and trophic factors. We also studied the effect of chitotriosidase, the inflammatory protein found upregulated in the cerebrospinal fluid from amyotrophic lateral sclerosis patients, on these cultures. RESULTS: We report that the cerebrospinal fluid from amyotrophic lateral sclerosis patients could induce an early and potent response in the form of microglial activation, skewed primarily towards a pro-inflammatory profile. It was seen in the form of upregulation of the pro-inflammatory cytokines and factors including IL-6, TNF-α, iNOS, COX-2, and PGE2. Concomitantly, a downregulation of beneficial trophic factors and anti-inflammatory markers including VEGF, glial cell line-derived neurotrophic factor, and IFN-γ was seen. In addition, chitotriosidase-1 appeared to act specifically via the microglial cells. CONCLUSION: Our findings demonstrate that the cerebrospinal fluid from amyotrophic lateral sclerosis patients holds enough cues to induce microglial inflammatory processes as an early event, which may contribute to the neurodegeneration seen in the sporadic amyotrophic lateral sclerosis. These findings highlight the dynamic role of microglial cells in the pathogenesis of the disease, thus suggesting the need for a multidimensional and temporally guarded therapeutic approach targeting the inflammatory pathways for its treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Líquido Cefalorraquídeo/química , Líquido Cefalorraquídeo/inmunología , Microglía/metabolismo , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Inflamación/líquido cefalorraquídeo , Inflamación/inmunología , Masculino , Microglía/efectos de los fármacos , Persona de Mediana Edad
5.
J Neuroinflammation ; 13(1): 212, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27578023

RESUMEN

BACKGROUND: Non-cell autonomous toxicity is one of the potential mechanisms implicated in the etiopathogenesis of amyotrophic lateral sclerosis (ALS). However, the exact role of glial cells in ALS pathology is yet to be fully understood. In a cellular model recapitulating the pathology of sporadic ALS, we have studied the inflammatory response of astroglia following exposure to the cerebrospinal fluid from ALS patients (ALS-CSF). METHODS: Various inflammatory markers including pro-inflammatory and anti-inflammatory cytokines, COX-2, PGE-2, trophic factors, glutamate, nitric oxide (NO), and reactive oxygen species (ROS) were analyzed in the rat astroglial cultures exposed to ALS-CSF and compared with the disease control or normal controls. We used immunofluorescence, ELISA, and immunoblotting techniques to investigate the protein expression and real-time PCR to study the messenger RNA (mRNA) expression. Glutamate, NO, and ROS were estimated using appropriate biochemical assays. Further, the effect of conditioned medium from the astroglial cultures exposed to ALS-CSF on NSC-34 motor neuronal cell line was detected using the MTT assay. Statistical analysis was carried out using one-way ANOVA followed by Tukey's post hoc test, or Student's t test, as applicable. RESULTS: Here, we report that the ALS-CSF enhanced the production and release of inflammatory cytokines IL-6 and TNF-α, as well as COX-2 and PGE-2. Concomitantly, anti-inflammatory cytokine IL-10 and the beneficial trophic factors, namely VEGF and GDNF, were down-regulated. We also found impaired regulation of glutamate, NO, and ROS in the astroglial cultures treated with ALS-CSF. The conditioned medium from the ALS-CSF exposed astroglial cultures induced degeneration in NSC-34 cells. CONCLUSIONS: Our study demonstrates that the astroglial cells contribute to the neuroinflammation-mediated neurodegeneration in the in vitro model of sporadic ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Astrocitos/metabolismo , Líquido Cefalorraquídeo/metabolismo , Mediadores de Inflamación/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Recién Nacidos , Astrocitos/patología , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA