RESUMEN
OBJECTIVE: In dogs with diet-associated dilated cardiomyopathy (DCM), we have identified electron microscopic changes suggestive of abnormal lysosomal accumulation of phospholipids and consistent with the appearance of drug-induced phospholipidosis in people and other animals. The objective of this study was to compare concentrations of urine di-docosahexaenoyl (22:6)-bis(monoacylglycerol)phosphate (BMP), a biomarker of drug-induced phospholipidosis, in dogs with DCM eating high-pulse (HP) diets, dogs with DCM eating low-pulse (LP) diets, and healthy controls (control-HP and control-LP). METHODS: In this cross-sectional study, voided urine was collected from client-owned dogs with DCM from September 2018 through March 2020. Urine di-22:6-BMP was measured by LC-MS-MS and normalized to urine creatinine. Normalized di-22:6-BMP concentrations were compared among groups using mixed-effects-model analysis. RESULTS: 53 dogs were included: DCM-HP (n = 25), DCM-LP (n = 4), control-HP (n = 10), and control-LP (n = 14). Mixed-effects models adjusted for age and sex showed that HP diet was significantly associated with higher normalized urine di-22:6-BMP concentrations. A 1-way ANOVA identified a significant difference among the 4 groups, with Tukey post hoc analysis showing that the DCM-HP group had significantly higher normalized urine di-22:6-BMP concentrations compared to the control-LP group. Normalized di-22:6-BMP concentrations were significantly positively correlated with diet pulse scores (r = 0.52). CONCLUSIONS: High-pulse diets were significantly associated with higher normalized urine di-22:6-BMP concentrations. CLINICAL RELEVANCE: These results support the possible presence of primary or secondary phospholipidosis in dogs with diet-associated DCM and provide a plausible mechanism for further investigation.
RESUMEN
Pulmonary artery aneurysms (PAAs) are rare, but important vascular phenomena with nonspecific signs and symptoms. While some patients remain asymptomatic, others manifest with serious symptoms such as chest pain, dyspnea, or hemoptysis. Often diagnosed incidentally, PAAs have various underlying etiologies, including congenital, acquired, and idiopathic. Giant cell arteritis (GCA) is a very rare cause of PAAs, with limited reported cases in the literature. This case series will review the clinical presentation, multimodality imaging, and management of four patients with isolated PAA due to GCA.
RESUMEN
Atrial fibrillation (AFib) and the risk of its lethal complications are propelled by fibrosis, which induces electrical heterogeneity and gives rise to reentry circuits. Atrial TREM2+ macrophages secrete osteopontin (encoded by Spp1), a matricellular signaling protein that engenders fibrosis and AFib. Here we show that silencing Spp1 in TREM2+ cardiac macrophages with an antibody-siRNA conjugate reduces atrial fibrosis and suppresses AFib in mice, thus offering a new immunotherapy for the most common arrhythmia.
RESUMEN
Atrial fibrillation disrupts contraction of the atria, leading to stroke and heart failure. We deciphered how immune and stromal cells contribute to atrial fibrillation. Single-cell transcriptomes from human atria documented inflammatory monocyte and SPP1+ macrophage expansion in atrial fibrillation. Combining hypertension, obesity, and mitral valve regurgitation (HOMER) in mice elicited enlarged, fibrosed, and fibrillation-prone atria. Single-cell transcriptomes from HOMER mouse atria recapitulated cell composition and transcriptome changes observed in patients. Inhibiting monocyte migration reduced arrhythmia in Ccr2-∕- HOMER mice. Cell-cell interaction analysis identified SPP1 as a pleiotropic signal that promotes atrial fibrillation through cross-talk with local immune and stromal cells. Deleting Spp1 reduced atrial fibrillation in HOMER mice. These results identify SPP1+ macrophages as targets for immunotherapy in atrial fibrillation.
Asunto(s)
Fibrilación Atrial , Macrófagos , Osteopontina , Animales , Humanos , Ratones , Fibrilación Atrial/genética , Fibrilación Atrial/inmunología , Atrios Cardíacos , Macrófagos/inmunología , Insuficiencia de la Válvula Mitral/genética , Osteopontina/genética , Eliminación de Gen , Movimiento Celular , Análisis de Expresión Génica de una Sola CélulaRESUMEN
Kidney injury molecule-1 (KIM-1) is a biomarker of renal injury and a predictor of cardiovascular disease. Aldosterone, via activation of the mineralocorticoid receptor, is linked to cardiac and renal injury. However, the impact of mineralocorticoid receptor activation and blockade on KIM-1 is uncertain. We investigated whether renal KIM-1 is increased in a cardiorenal injury model induced by L-NAME/ANG II, and whether mineralocorticoid receptor blockade prevents the increase in KIM-1. Since statin use is associated with lower aldosterone, we also investigated whether administering eiSther a lipophilic statin (simvastatin) or a hydrophilic statin (pravastatin) prevents the increase in renal KIM-1. Female Wistar rats (8-10 week old), consuming a high salt diet (1.6% Na+), were randomized to the following conditions for 14 days: control; L-NAME (0.2 mg/mL in drinking water)/ANG II (225 ug/kg/day on days 12-14); L-NAME/ANG II + eplerenone (100 mg/kg/day p.o.); L-NAME/ANG II + pravastatin (20 mg/kg/day p.o.); L-NAME/ANG II + simvastatin (20 mg/kg/day p.o.). Groups treated with L-NAME/ANG II had significantly higher blood pressure, plasma and urine aldosterone, cardiac injury/stroke composite score, and renal KIM-1 than the control group. Both eplerenone and simvastatin reduced 24-h urinary KIM-1 (p = 0.0046, p = 0.031, respectively) and renal KIM-1 immunostaining (p = 0.004, p = 0.037, respectively). Eplerenone also reduced renal KIM-1 mRNA expression (p = 0.012) and cardiac injury/stroke composite score (p = 0.04). Pravastatin did not affect these damage markers. The 24-h urinary KIM-1, renal KIM-1 immunostaining, and renal KIM-1 mRNA expression correlated with cardiac injury/stroke composite score (p < 0.0001, Spearman ranked correlation = 0.69, 0.66, 0.59, respectively). In conclusion, L-NAME/ANG II increases renal KIM-1 and both eplerenone and simvastatin blunt this increase in renal KIM-1.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipertensión , Accidente Cerebrovascular , Animales , Femenino , Ratas , Aldosterona/metabolismo , Angiotensina II/metabolismo , Presión Sanguínea , Eplerenona/farmacología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipertensión/metabolismo , Riñón/metabolismo , NG-Nitroarginina Metil Éster , Pravastatina/farmacología , Ratas Wistar , Receptores de Mineralocorticoides , ARN Mensajero/metabolismo , SimvastatinaRESUMEN
OBJECTIVES: We sought to develop a rigorous, systematic protocol for the dissection and preservation of human hearts for biobanking that expands previous success in postmortem transcriptomics to multiomics from paired tissue. BACKGROUND: Existing cardiac biobanks consist largely of biopsy tissue or explanted hearts in select diseases and are insufficient for correlating whole organ phenotype with clinical data. METHODS: We demonstrate optimal conditions for multiomics interrogation (ribonucleic acid (RNA) sequencing, untargeted metabolomics) in hearts by evaluating the effect of technical variables (storage solution, temperature) and simulated postmortem interval (PMI) on RNA and metabolite stability. We used bovine (n=3) and human (n=2) hearts fixed in PAXgene or snap-frozen with liquid nitrogen. RESULTS: Using a paired Wald test, only two of the genes assessed were differentially expressed between left ventricular samples from bovine hearts stored in PAXgene at 0 and 12 hours PMI (FDR q<0.05). We obtained similar findings in human left ventricular samples, suggesting stability of RNA transcripts at PMIs up to 12 hours. Different library preparation methods (mRNA poly-A capture vs. rRNA depletion) resulted in similar quality metrics with both library preparations achieving >95% of reads properly aligning to the reference genomes across all PMIs for bovine and human hearts. PMI had no effect on RNA Integrity Number or quantity of RNA recovered at the time points evaluated. Of the metabolites identified (855 total) using untargeted metabolomics of human left ventricular tissue, 503 metabolites remained stable across PMIs (0, 4, 8, 12 hours). Most metabolic pathways retained several stable metabolites. CONCLUSIONS: Our data demonstrate a technically rigorous, reproducible protocol that will enhance cardiac biobanking practices and facilitate novel insights into human CVD. CONDENSED ABSTRACT: Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Current biobanking practices insufficiently capture both the diverse array of phenotypes present in CVDs and the spatial heterogeneity across cardiac tissue sites. We have developed a rigorous and systematic protocol for the dissection and preservation of human cardiac biospecimens to enhance the availability of whole organ tissue for multiple applications. When combined with longitudinal clinical phenotyping, our protocol will enable multiomics in hearts to deepen our understanding of CVDs.
Asunto(s)
Bancos de Muestras Biológicas , Enfermedades Cardiovasculares , Humanos , Bovinos , Animales , Multiómica , Corazón , ARN/genéticaRESUMEN
The pathobiology of in situ pulmonary thrombosis in acute respiratory distress syndrome (ARDS) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is incompletely characterized. In human pulmonary artery endothelial cells (HPAECs), hypoxia increases neural precursor cell expressed, developmentally downregulated 9 (NEDD9) and induces expression of a prothrombotic NEDD9 peptide (N9P) on the extracellular plasma membrane surface. We hypothesized that the SARS-CoV-2-ARDS pathophenotype involves increased pulmonary endothelial N9P. Paraffin-embedded autopsy lung specimens were acquired from patients with SARS-CoV-2-ââââââARDS (n = 13), ARDS from other causes (n = 10), and organ donor controls (n = 5). Immunofluorescence characterized the expression of N9P, fibrin, and transcription factor 12 (TCF12), a putative binding target of SARS-CoV-2 and known transcriptional regulator of NEDD9. We performed RNA-sequencing on normal HPAECs treated with normoxia or hypoxia (0.2% O2) for 24 h. Immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) profiled protein-protein interactions involving N9P relevant to thrombus stabilization. Hypoxia increased TCF12 messenger RNA significantly compared to normoxia in HPAECs in vitro (+1.19-fold, p = 0.001; false discovery rate = 0.005), and pulmonary endothelial TCF12 expression was increased threefold in SARS-CoV-2-ARDS versus donor control lungs (p < 0.001). Compared to donor controls, pulmonary endothelial N9P-fibrin colocalization was increased in situ in non-SARS-CoV-2-ARDS and SARS-CoV-2-ARDS decedents (3.7 ± 1.2 vs. 10.3 ± 3.2 and 21.8 ± 4.0 arb. units, p < 0.001). However, total pulmonary endothelial N9P was increased significantly only in SARS-CoV-2-ARDS versus donor controls (15 ± 4.2 vs. 6.3 ± 0.9 arb. units, p < 0.001). In HPAEC plasma membrane isolates, IP-LC-MS identified a novel protein-protein interaction between NEDD9 and the ß3-subunit of the αvß3-integrin, which regulates fibrin anchoring to endothelial cells. In conclusion, lethal SARS-CoV-2-ARDS is associated with increased pulmonary endothelial N9P expression and N9P-fibrin colocalization in situ. Further investigation is needed to determine the pathogenetic and potential therapeutic relevance of N9P to the thrombotic pathophenotype of SARS-CoV-2-ARDS.
RESUMEN
BACKGROUND: Perivascular fibrosis, characterized by increased amount of connective tissue around vessels, is a hallmark for vascular disease. Ang II (angiotensin II) contributes to vascular disease and end-organ damage via promoting T-cell activation. Despite recent data suggesting the role of T cells in the progression of perivascular fibrosis, the underlying mechanisms are poorly understood. METHODS: TF (transcription factor) profiling was performed in peripheral blood mononuclear cells of hypertensive patients. CD4-targeted KLF10 (Kruppel like factor 10)-deficient (Klf10fl/flCD4Cre+; [TKO]) and CD4-Cre (Klf10+/+CD4Cre+; [Cre]) control mice were subjected to Ang II infusion. End point characterization included cardiac echocardiography, aortic imaging, multiorgan histology, flow cytometry, cytokine analysis, aorta and fibroblast transcriptomic analysis, and aortic single-cell RNA-sequencing. RESULTS: TF profiling identified increased KLF10 expression in hypertensive human subjects and in CD4+ T cells in Ang II-treated mice. TKO mice showed enhanced perivascular fibrosis, but not interstitial fibrosis, in aorta, heart, and kidney in response to Ang II, accompanied by alterations in global longitudinal strain, arterial stiffness, and kidney function compared with Cre control mice. However, blood pressure was unchanged between the 2 groups. Mechanistically, KLF10 bound to the IL (interleukin)-9 promoter and interacted with HDAC1 (histone deacetylase 1) inhibit IL-9 transcription. Increased IL-9 in TKO mice induced fibroblast intracellular calcium mobilization, fibroblast activation, and differentiation and increased production of collagen and extracellular matrix, thereby promoting the progression of perivascular fibrosis and impairing target organ function. Remarkably, injection of anti-IL9 antibodies reversed perivascular fibrosis in Ang II-infused TKO mice and C57BL/6 mice. Single-cell RNA-sequencing revealed fibroblast heterogeneity with activated signatures associated with robust ECM (extracellular matrix) and perivascular fibrosis in Ang II-treated TKO mice. CONCLUSIONS: CD4+ T cell deficiency of Klf10 exacerbated perivascular fibrosis and multi-organ dysfunction in response to Ang II via upregulation of IL-9. Klf10 or IL-9 in T cells might represent novel therapeutic targets for treatment of vascular or fibrotic diseases.
Asunto(s)
Linfocitos T CD4-Positivos , Hipertensión , Angiotensina II/farmacología , Animales , Linfocitos T CD4-Positivos/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz , Fibrosis , Humanos , Interleucina-9 , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARNRESUMEN
Endomyocardial biopsy (EMB) screening represents the standard of care for detecting allograft rejections after heart transplant. Manual interpretation of EMBs is affected by substantial interobserver and intraobserver variability, which often leads to inappropriate treatment with immunosuppressive drugs, unnecessary follow-up biopsies and poor transplant outcomes. Here we present a deep learning-based artificial intelligence (AI) system for automated assessment of gigapixel whole-slide images obtained from EMBs, which simultaneously addresses detection, subtyping and grading of allograft rejection. To assess model performance, we curated a large dataset from the United States, as well as independent test cohorts from Turkey and Switzerland, which includes large-scale variability across populations, sample preparations and slide scanning instrumentation. The model detects allograft rejection with an area under the receiver operating characteristic curve (AUC) of 0.962; assesses the cellular and antibody-mediated rejection type with AUCs of 0.958 and 0.874, respectively; detects Quilty B lesions, benign mimics of rejection, with an AUC of 0.939; and differentiates between low-grade and high-grade rejections with an AUC of 0.833. In a human reader study, the AI system showed non-inferior performance to conventional assessment and reduced interobserver variability and assessment time. This robust evaluation of cardiac allograft rejection paves the way for clinical trials to establish the efficacy of AI-assisted EMB assessment and its potential for improving heart transplant outcomes.
Asunto(s)
Aprendizaje Profundo , Rechazo de Injerto , Aloinjertos , Inteligencia Artificial , Biopsia , Rechazo de Injerto/diagnóstico , Humanos , Miocardio/patologíaRESUMEN
Scientific research has been changing medical practice at an increasing pace. To keep up with this change, physicians of the future will need to be lifelong learners with the skills to engage with emerging science and translate it into clinical care. How medical schools can best prepare students for ongoing scientific change remains unclear. Adding to the challenge is reduced time allocated to basic science in curricula and rapid expansion of relevant scientific fields. A return to science with greater depth after clinical clerkships has been suggested, although few schools have adopted such curricula and implementation can present challenges. The authors describe an innovation at Harvard Medical School, the Advanced Integrated Science Courses (AISCs), which are taken after core clerkships. Students are required to take 2 such courses, which are offered in a variety of topics. Rather than factual content, the learning objectives are a set of generalizable skills to enable students to critically evaluate emerging research and its relationship to medical practice. Making these generalizable skills the defining principle of the courses has several important advantages: it allows standardization of acquired skills to be combined with diverse course topics ranging from basic to translational and population sciences; students can choose courses and projects aligned with their interests, thereby enhancing engagement, curiosity, and career relevance; schools can tailor course offerings to the interests of local faculty; and the generalizable skills delineate a unique purpose of these courses within the overall medical school curriculum. For the 3 years AISCs have been offered, students rated the courses highly and reported learning the intended skill set effectively. The AISC concept addresses the challenge of preparing students for this era of rapidly expanding science and should be readily adaptable to other medical schools.
Asunto(s)
Prácticas Clínicas , Curriculum , Humanos , Aprendizaje , Facultades de MedicinaRESUMEN
Severe coronavirus disease 2019 (COVID-19) increases the risk of myocardial injury that contributes to mortality. This study used multiparameter immunofluorescence to extensively examine heart autopsy tissue of 7 patients who died of COVID-19 compared to 12 control specimens, with or without cardiovascular disease. Consistent with prior reports, no evidence of viral infection or lymphocytic infiltration indicative of myocarditis was found. However, frequent and extensive thrombosis was observed in large and small vessels in the hearts of the COVID-19 cohort, findings that were infrequent in controls. The endothelial lining of thrombosed vessels typically lacked evidence of cytokine-mediated endothelial activation, assessed as nuclear expression of transcription factors p65 (RelA), pSTAT1, or pSTAT3, or evidence of inflammatory activation assessed by expression of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tissue factor, or von Willebrand factor (VWF). Intimal EC lining was also generally preserved with little evidence of cell death or desquamation. In contrast, there were frequent markers of neutrophil activation within myocardial thrombi in patients with COVID-19, including neutrophil-platelet aggregates, neutrophil-rich clusters within macrothrombi, and evidence of neutrophil extracellular trap (NET) formation. These findings point to alterations in circulating neutrophils rather than in the endothelium as contributors to the increased thrombotic diathesis in the hearts of COVID-19 patients.
Asunto(s)
COVID-19 , Vasos Coronarios , Miocarditis , Miocardio , SARS-CoV-2/metabolismo , Trombosis , Anciano , Anciano de 80 o más Años , Plaquetas/metabolismo , Plaquetas/patología , COVID-19/metabolismo , COVID-19/patología , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Miocarditis/metabolismo , Miocarditis/patología , Miocardio/metabolismo , Miocardio/patología , Activación Neutrófila , Neutrófilos/metabolismo , Neutrófilos/patología , Agregación Plaquetaria , Trombosis/metabolismo , Trombosis/patologíaAsunto(s)
Arteritis de Células Gigantes , Pedúnculo Cerebeloso Medio , Accidente Cerebrovascular , Arteritis de Células Gigantes/complicaciones , Arteritis de Células Gigantes/diagnóstico por imagen , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagenRESUMEN
Computational methods have made substantial progress in improving the accuracy and throughput of pathology workflows for diagnostic, prognostic, and genomic prediction. Still, lack of interpretability remains a significant barrier to clinical integration. We present an approach for predicting clinically-relevant molecular phenotypes from whole-slide histopathology images using human-interpretable image features (HIFs). Our method leverages >1.6 million annotations from board-certified pathologists across >5700 samples to train deep learning models for cell and tissue classification that can exhaustively map whole-slide images at two and four micron-resolution. Cell- and tissue-type model outputs are combined into 607 HIFs that quantify specific and biologically-relevant characteristics across five cancer types. We demonstrate that these HIFs correlate with well-known markers of the tumor microenvironment and can predict diverse molecular signatures (AUROC 0.601-0.864), including expression of four immune checkpoint proteins and homologous recombination deficiency, with performance comparable to 'black-box' methods. Our HIF-based approach provides a comprehensive, quantitative, and interpretable window into the composition and spatial architecture of the tumor microenvironment.
Asunto(s)
Neoplasias/clasificación , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Patología Molecular/métodos , Fenotipo , Algoritmos , Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador , Medicina de Precisión , Microambiente TumoralRESUMEN
Rationale: Data on the molecular mechanisms that regulate platelet-pulmonary endothelial adhesion under conditions of hypoxia are lacking, but may have important therapeutic implications. Objectives: To identify a hypoxia-sensitive, modifiable mediator of platelet-pulmonary artery endothelial cell adhesion and thrombotic remodeling. Methods: Network medicine was used to profile protein-protein interactions in hypoxia-treated human pulmonary artery endothelial cells. Data from liquid chromatography-mass spectrometry and microscale thermophoresis informed the development of a novel antibody (Ab) to inhibit platelet-endothelial adhesion, which was tested in cells from patients with chronic thromboembolic pulmonary hypertension (CTEPH) and three animal models in vivo. Measurements and Main Results: The protein NEDD9 was identified in the hypoxia thrombosome network in silico. Compared with normoxia, hypoxia (0.2% O2) for 24 hours increased HIF-1α (hypoxia-inducible factor-1α)-dependent NEDD9 upregulation in vitro. Increased NEDD9 was localized to the plasma-membrane surface of cells from control donors and patients with CTEPH. In endarterectomy specimens, NEDD9 colocalized with the platelet surface adhesion molecule P-selectin. Our custom-made anti-NEDD9 Ab targeted the NEDD9-P-selectin interaction and inhibited the adhesion of activated platelets to pulmonary artery endothelial cells from control donors in vitro and from patients with CTEPH ex vivo. Compared with control mice, platelet-pulmonary endothelial aggregates and pulmonary hypertension induced by ADP were decreased in NEDD9-/- mice or wild-type mice treated with the anti-NEDD9 Ab, which also decreased chronic pulmonary thromboembolic remodeling in vivo. Conclusions: The NEDD9-P-selectin protein-protein interaction is a modifiable target with which to inhibit platelet-pulmonary endothelial adhesion and thromboembolic vascular remodeling, with potential therapeutic implications for patients with disorders of increased hypoxia signaling pathways, including CTEPH.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Adhesión Celular/fisiología , Hipoxia/fisiopatología , Circulación Pulmonar/fisiología , Embolia Pulmonar/fisiopatología , Transducción de Señal/fisiología , Animales , Plaquetas/fisiología , Células Cultivadas/fisiología , Células Endoteliales/fisiología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Modelos AnimalesRESUMEN
(1) describe imaging features of CIA, (2) compare dilation rate and wall thickening of aortic aneurysms in patients with CIA versus those with giant cell arteritis/aortitis (GCA), (3) present clinical outcomes of CIA patients. Retrospective search of electronic records from 2004 to 2018 yielded 71 patients, 52 of whom were female, with a mean age of 67.5 ± 9.0 years old, with a new clinical diagnosis of cranial or extracranial GCA (GCA group), and giant cell aortitis revealed by the aortic biopsy (CIA group). Comparisons between groups were conducted using the Wilcoxon rank-sum and Fisher's exact tests. Survival from the date of initial diagnosis to the end of data collection was compared between the two groups through a log-rank test. CIA patients (n = 23; 32%) presented with cardiovascular symptoms, and none had systemic inflammatory symptoms. Inflammatory markers were significantly higher among GCA patients than among CIA patients (p < 0.0001). The CIA group demonstrated thoracic aortic aneurysms without wall thickening. None of the GCA patients (n = 48; 68%) had aneurysmal dilation in the aorta at the time of diagnosis. None of the four CIA patients had FDG uptake in the aorta, while nine out of 13 GCA patients had FDG uptake in the vessels. There was no statistically significant difference in the survival between the two groups (p = 0.12). CIA patients presented with cardiovascular symptoms and was characterized by aneurysm of the aorta without the involvement of the infrarenal aortic segment. The role of FDG-PET/CT in CIA is less certain, though none of the patients in this cohort had FDG uptake in the vessels.
Asunto(s)
Aneurisma de la Aorta/diagnóstico por imagen , Aortitis/diagnóstico por imagen , Aortografía , Arteritis de Células Gigantes/diagnóstico por imagen , Corticoesteroides/uso terapéutico , Anciano , Antiinflamatorios/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Aneurisma de la Aorta/patología , Aortitis/tratamiento farmacológico , Aortitis/patología , Angiografía por Tomografía Computarizada , Diagnóstico Diferencial , Dilatación Patológica , Progresión de la Enfermedad , Femenino , Fluorodesoxiglucosa F18 , Arteritis de Células Gigantes/tratamiento farmacológico , Arteritis de Células Gigantes/patología , Humanos , Angiografía por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Valor Predictivo de las Pruebas , Pronóstico , Radiofármacos , Estudios RetrospectivosRESUMEN
Little is known about how human Y-Chromosome gene expression directly contributes to differences between XX (female) and XY (male) individuals in nonreproductive tissues. Here, we analyzed quantitative profiles of Y-Chromosome gene expression across 36 human tissues from hundreds of individuals. Although it is often said that Y-Chromosome genes are lowly expressed outside the testis, we report many instances of elevated Y-Chromosome gene expression in a nonreproductive tissue. A notable example is EIF1AY, which encodes eukaryotic translation initiation factor 1A Y-linked, together with its X-linked homolog EIF1AX Evolutionary loss of a Y-linked microRNA target site enabled up-regulation of EIF1AY, but not of EIF1AX, in the heart. Consequently, this essential translation initiation factor is nearly twice as abundant in male as in female heart tissue at the protein level. Divergence between the X and Y Chromosomes in regulatory sequence can therefore lead to tissue-specific Y-Chromosome-driven sex biases in expression of critical, dosage-sensitive regulatory genes.