Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Anim Sci J ; 95(1): e13988, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165081

RESUMEN

Short-chain fatty acids (SCFAs) produced in the rumen are key factors affecting dairy cows' energy balance (EB). This study aimed to quantitatively evaluate the effects of SCFAs production on EB in dairy cows. Primiparous dairy cows were divided into high non-esterified fatty acid (NEFA; group H) and low NEFA (group L) groups based on their blood NEFA levels at week 3 postpartum, which served as an indicator of EB. The amounts of SCFAs produced in the rumen, including acetate, propionate, and butyrate (SCFAsP), were calculated using the predicted rumen volume. Because there were no differences between the groups in SCFAsP/dry matter intake, whereas 4% fat-corrected milk (FCM)/SCFAsP was significantly higher in group H, it was suggested that more body fat was mobilized for milk production in group H. However, group L, which showed better EB, had propionate dominant and lower FCM/SCFAsP and milk energy/SCFAs energy at 3 and 7 weeks postpartum, indicating that group L had a better energy supply for milk production. These results suggest that SCFAsP produced by rumen fermentation and the composition of SCFAs in the rumen affect milk production and EB.


Asunto(s)
Metabolismo Energético , Ácidos Grasos no Esterificados , Ácidos Grasos Volátiles , Fermentación , Lactancia , Leche , Rumen , Animales , Rumen/metabolismo , Bovinos/metabolismo , Bovinos/fisiología , Femenino , Ácidos Grasos Volátiles/metabolismo , Lactancia/metabolismo , Lactancia/fisiología , Leche/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos no Esterificados/sangre , Embarazo , Paridad , Periodo Posparto/metabolismo , Propionatos/metabolismo
2.
Front Microbiol ; 15: 1404991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887715

RESUMEN

Ruminal methane production is the main sink for metabolic hydrogen generated during rumen fermentation, and is a major contributor to greenhouse gas (GHG) emission. Individual ruminants exhibit varying methane production efficiency; therefore, understanding the microbial characteristics of low-methane-emitting animals could offer opportunities for mitigating enteric methane. Here, we investigated the association between rumen fermentation and rumen microbiota, focusing on methane production, and elucidated the physiological characteristics of bacteria found in low methane-producing cows. Thirteen Holstein cows in the late lactation stage were fed a corn silage-based total mixed ration (TMR), and feed digestion, milk production, rumen fermentation products, methane production, and rumen microbial composition were examined. Cows were classified into two ruminal fermentation groups using Principal component analysis: low and high methane-producing cows (36.9 vs. 43.2 L/DMI digested) with different ruminal short chain fatty acid ratio [(C2+C4)/C3] (3.54 vs. 5.03) and dry matter (DM) digestibility (67.7% vs. 65.3%). However, there were no significant differences in dry matter intake (DMI) and milk production between both groups. Additionally, there were differences in the abundance of OTUs assigned to uncultured Prevotella sp., Succinivibrio, and other 12 bacterial phylotypes between both groups. Specifically, a previously uncultured novel Prevotella sp. with lactate-producing phenotype was detected, with higher abundance in low methane-producing cows. These findings provide evidence that Prevotella may be associated with low methane and high propionate production. However, further research is required to improve the understanding of microbial relationships and metabolic processes involved in the mitigation of enteric methane.

3.
Anim Biosci ; 37(2): 360-369, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37946422

RESUMEN

Ruminal methane production functions as the main sink for metabolic hydrogen generated through rumen fermentation and is recognized as a considerable source of greenhouse gas emissions. Methane production is a complex trait affected by dry matter intake, feed composition, rumen microbiota and their fermentation, lactation stage, host genetics, and environmental factors. Various mitigation approaches have been proposed. Because individual ruminants exhibit different methane conversion efficiencies, the microbial characteristics of low-methane-emitting animals can be essential for successful rumen manipulation and environment-friendly methane mitigation. Several bacterial species, including Sharpea, uncharacterized Succinivibrionaceae, and certain Prevotella phylotypes have been listed as key players in low-methane-emitting sheep and cows. The functional characteristics of the unclassified bacteria remain unclear, as they are yet to be cultured. Here, we review ruminal methane production and mitigation strategies, focusing on rumen fermentation and the functional role of rumen microbiota, and describe the phylogenetic and physiological characteristics of a novel Prevotella species recently isolated from low methane-emitting and high propionate-producing cows. This review may help to provide a better understanding of the ruminal digestion process and rumen function to identify holistic and environmentally friendly methane mitigation approaches for sustainable ruminant production.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35254232

RESUMEN

The genus Prevotella plays an important role in polysaccharide degradation and fermentation in the rumen. To further understand the function of the phylogenetically diverse genus Prevotella, it is necessary to explore the individual characteristics at the species level. In this study, Gram-negative anaerobic bacterial strains isolated from the rumen of Holstein cows were identified. Strain R5019T was classified within the genus Prevotella based on 16S rRNA gene sequence-based phylogenetic analysis. The values of 16S rRNA gene sequence similarity, average nucleotide identity and digital DNA-DNA hybridization between strain R5019T and its phylogenetically nearest species Prevotella multisaccharivorax PPPA20T were 89.8, 82.6, and 29.3 %, respectively. The genome size of R5019T was estimated to be ca. 4.19 Mb with a genomic G+C content of 49.5 mol%. The major cellular fatty acids and menaquinones were C15 : 0 anteiso and C17 : 0 anteiso and MK-11 and MK-12, respectively. Succinate, lactate, malate, acetate and formate were produced as the fermentation end products using glucose. Based on phylogenetic, physiological, biochemical and genomic differences between 11 strains and other phylogenetically related Prevotella species, a novel species, Prevotella lacticifex sp. nov., is proposed within the genus Prevotella. The type strain is R5019T (=JCM 34664T=DSM 112675T).


Asunto(s)
Ácidos Grasos , Rumen , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Bovinos , ADN Bacteriano/genética , Ácidos Grasos/química , Femenino , Filogenia , Prevotella , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
Anim Sci J ; 92(1): e13503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398898

RESUMEN

The effect of cashew nut shell liquid (CNSL) feeding on bacterial and archaeal community of the bovine rumen was investigated by analyzing clone libraries targeting 16S rRNA genes, methyl-coenzyme reductase A-encoding genes (mcrA), and their respective transcripts. Rumen samples were collected from three non-lactating cows fed on a hay and concentrate diet with or without CNSL supplementation. DNA and complementary DNA (cDNA) libraries were generated for investigating rumen microbial communities. MiSeq analysis also was performed to understand more comprehensively the changes in the microbial community structures. Following CNSL supplementation, the number of operational taxonomical unit (OTU) and diversity indices of bacterial and archaeal community were decreased. Bacterial OTUs belonging to Proteobacteria, including Succinivibrio, occurred at a higher frequency with CNSL feeding, especially in cDNA libraries. The methanogenic archaeal community became dominated by Methanomicrobium. A bacterial community shift also was observed in the MiSeq data, indicating that CNSL increased the proportion of Succinivibrio and other genera known to be involved in propionate production. Methanogenic archaeal community shifts to increase Methanoplanus and to decrease Methanobrevibacter also were observed. Together, these results imply the occurrence of significant changes in rumen communities, not only for bacteria but also for methanogens, following CNSL feeding.


Asunto(s)
Anacardium , Alimentación Animal , Bovinos/metabolismo , Bovinos/microbiología , Dieta/veterinaria , Suplementos Dietéticos , Microbioma Gastrointestinal/fisiología , Metano/metabolismo , Microbiota , Propionatos/metabolismo , Rumen/microbiología , Animales , Methanobrevibacter/metabolismo , Methanomicrobiaceae/metabolismo
6.
Anim Sci J ; 90(12): 1556-1566, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31650688

RESUMEN

Ruminant animals are able to convert plant materials (grain and the human-indigestible portion of carbohydrates) to milk and meat. In this conversion, most of the plant materials are digested by rumen fermentation and are changed to short-chain fatty acids, microbial cells, and methane, which is released into the atmosphere. The relationships among feed, rumen fermentation, and milk production are poorly understood. Here we report a novel indicator of characteristics of rumen fermentation, theoretical turnover rate (TTOR) of the rumen liquid fraction. The TTOR was calculated from the presumed rumen volume (PRV) which is estimated by dividing the methane yield by the methane concentration of rumen fluid. The formula for the TTOR is: TTOR = PRV/body weight0.75 . Our present analyses confirm that the TTOR as an indicator is capable of connecting feed, rumen fermentation, and milk production, because dry matter intake/TTOR showed a strong correlation with milk yield/TTOR. In addition, the TTOR may be related to ruminal pH, as we observed that the ruminal pH decreased as the TTOR increased. We propose that the TTOR is a factor characterizing rumen fermentation and a good indicator of the productivity of ruminants and dysbiosis of the rumen microbiome.


Asunto(s)
Alimentación Animal , Fermentación , Lactancia , Rumen/metabolismo , Alimentación Animal/análisis , Animales , Bovinos , Digestión , Ácidos Grasos Volátiles/metabolismo , Femenino , Concentración de Iones de Hidrógeno , Metano/metabolismo , Leche/química , Rumen/anatomía & histología , Rumen/microbiología
7.
Anim Sci J ; 90(10): 1362-1376, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31407448

RESUMEN

We investigated potential relationships between rumen microbiota and milk production in dairy cows during the transition period. Twelve dairy cows were divided into a low-yield (LY) or high-yield (HY) group based on their milk yield. Rumen samples were taken from dairy cows at 3 weeks before parturition, and at 4, 8, and 12 weeks after parturition. 16S rDNA-based metagenomic analysis showed that diversities of rumen microbiota in both groups were similar and the number of operational taxonomic units (OTUs) was lower in the postpartum than prepartum period in both groups. The abundance of Bacteroidetes and ratio of Bacteroidetes:Firmicutes was higher in the HY than the LY group. OTUs assigned to Prevotella bryantii, Fibrobacter succinogenes, Ruminococcus albus, Butyrivibrio fibrisolvens, and Succinivibrio sp. were abundant in the HY group. These OTUs were significantly related to the propionate molar proportion of rumen fluids in the HY group. OTUs assigned to Lachnospiraceae, Bifidobacterium sp. and Saccharofermentans were dominant in the LY group. Predictive functional profiling revealed that abundance of gene families involved in amino acid and vitamin metabolism was higher in the HY than the LY group. These results suggest that the community structure and fermentation products of rumen microbiota could be associated with milk production of dairy cows.


Asunto(s)
Rumen/microbiología , Animales , Bovinos , Femenino , Microbioma Gastrointestinal , Lactancia , Metagenoma , Leche , Parto , Periodo Posparto , Embarazo
8.
Methods Mol Biol ; 1796: 57-65, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29856046

RESUMEN

To isolate strictly anaerobic rumen bacteria capable of degrading cellulose, environmental and nutritional conditions similar to the rumen environment should be simulated in vitro. One of the most useful techniques for isolating rumen bacteria is the roll-tube technique. In this chapter, the roll-tube technique for isolating cellulolytic rumen bacteria is briefly outlined.


Asunto(s)
Bacterias/aislamiento & purificación , Celulosa/metabolismo , Biología Molecular/métodos , Rumen/microbiología , Anaerobiosis , Animales , Dióxido de Carbono/análisis , Bovinos , Medios de Cultivo , Soluciones
9.
FEMS Microbiol Lett ; 364(15)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28859317

RESUMEN

Fibrobacter succinogenes rapidly colonizes the preruminant calf rumen and becomes a dominant cellulolytic bacterium in the rumen after weaning. Although F. succinogenes actively degrades cellulose in the rumen, it seems that there is no or little of its substrate, cellulose, in the rumen of preweaned calves. We thus evaluated the ability of F. succinogenes to utilize lactose, a main sugar of milk, with or without the presence of cellobiose. We grew F. succinogenes S85 on media containing 2.5% lactose combined with 0%-0.2% cellobiose or a medium with 0.2% cellobiose but without lactose. The generation times on the 0.2% cellobiose medium and the 2.5% lactose medium were 1.9 and 16.2 h, respectively. The bacterium showed rapid growth on cellobiose and diauxic growth on the lactose media containing 0.05%-0.2% cellobiose. Moreover, the production of ß-galactosidase was low in the presence of 0.1%-0.2% cellobiose. Since the ß-galactosidase contained a signal peptide and a Por secretion system C-terminal sorting domain, we speculate that the ß-galactosidase would be secreted from the bacterial cells by the Por secretion system. Our data indicate the possibility that F. succinogenes could colonize preruminant calf rumen, consuming the lactose present in cow milk.


Asunto(s)
Celobiosa/metabolismo , Fibrobacter/crecimiento & desarrollo , Fibrobacter/metabolismo , Lactosa/metabolismo , Animales , Sistemas de Secreción Bacterianos/genética , Bovinos , Medios de Cultivo/química , Fibrobacter/efectos de los fármacos , Fibrobacter/genética , Rumen/microbiología , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/genética
10.
Anim Sci J ; 88(7): 974-982, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27878924

RESUMEN

Relationship between rumen fermentation parameters, blood biochemical profiles and milk production traits in different yielding dairy cows during early lactation was investigated. Twelve dairy cows were divided into two groups based on their milk yield, that is low-yield (LY) and high-yield (HY) groups. Rumen fluid and blood were collected at 3 weeks prepartum and 4, 8 and 12 weeks postpartum. Results showed that proportions of acetate, propionate to total short chain fatty acids and acetate : propionate ratio were changed (P < 0.05) in both groups during the peripartum period, whereas butyrate and acetate : butyrate ratio were only altered in the HY group. Blood cholesterol, beta-hydroxybutyric acid (BHBA) and glutamic oxaloacetic transaminase in the HY group were higher (P < 0.01) than those in the LY group. Principal component analysis revealed that milk yield and milk compositions were differently clustered between groups. These parameters showed similar direction with dry matter intake in the HY group and adverse direction in the LY group. Linear regression analysis indicated that butyrate was positively correlated with BHBA (P < 0.05) in the HY group. This study suggests that cows in the HY group seem to accommodate appropriately to negative energy balance in early lactation through rumen fermentation.


Asunto(s)
Alimentación Animal , Bovinos/metabolismo , Bovinos/fisiología , Dieta/veterinaria , Fermentación/fisiología , Lactancia/fisiología , Rumen/metabolismo , Rumen/fisiología , Ácido 3-Hidroxibutírico/sangre , Acetatos/sangre , Acetatos/metabolismo , Animales , Aspartato Aminotransferasas/sangre , Colesterol/sangre , Metabolismo Energético , Ácidos Grasos Volátiles/sangre , Ácidos Grasos Volátiles/metabolismo , Femenino , Leche/química , Periodo Periparto , Propionatos/sangre , Propionatos/metabolismo , Tiocarbamatos/sangre , Tiocarbamatos/metabolismo
11.
Front Microbiol ; 7: 1122, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27486452

RESUMEN

Management of metabolic hydrogen ([H]) in the rumen has been identified as an important consideration when reducing ruminant CH4 emissions. However, little is known about hydrogen flux and microbial rumen population responses to CH4 inhibition when animals are fed with slowly degradable diets. The effects of the anti-methanogenic compound, chloroform, on rumen fermentation, microbial ecology, and H2/CH4 production were investigated in vivo. Eight rumen fistulated Brahman steers were fed a roughage hay diet (Rhode grass hay) or roughage hay:concentrate diet (60:40) with increasing levels (low, mid, and high) of chloroform in a cyclodextrin matrix. The increasing levels of chloroform resulted in an increase in H2 expelled as CH4 production decreased with no effect on dry matter intakes. The amount of expelled H2 per mole of decreased methane, was lower for the hay diet suggesting a more efficient redirection of hydrogen into other microbial products compared with hay:concentrate diet. A shift in rumen fermentation toward propionate and branched-chain fatty acids was observed for both diets. Animals fed with the hay:concentrate diet had both higher formate concentration and H2 expelled than those fed only roughage hay. Metabolomic analyses revealed an increase in the concentration of amino acids, organic, and nucleic acids in the fluid phase for both diets when methanogenesis was inhibited. These changes in the rumen metabolism were accompanied by a shift in the microbiota with an increase in Bacteroidetes:Firmicutes ratio and a decrease in Archaea and Synergistetes for both diets. Within the Bacteroidetes family, some OTUs assigned to Prevotella were promoted under chloroform treatment. These bacteria may be partly responsible for the increase in amino acids and propionate in the rumen. No significant changes were observed for abundance of fibrolytic bacteria, protozoa, and fungi, which suggests that fiber degradation was not impaired. The observed 30% decrease in methanogenesis did not adversely affect rumen metabolism and the rumen microbiota was able to adapt and redirect [H] into other microbial end-products for both diets. However, it is also required dietary supplements or microbial treatments to capture the additional H2 expelled by the animal to further improve rumen digestive efficiency.

12.
Anim Sci J ; 87(11): 1363-1370, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26875748

RESUMEN

To find the abundant and characteristic fibrolytic enzyme-coding gene expressed in fiber-associating microbiota, a metatranscriptomic data set was obtained from fiber-associating microbiota, and it was compared with that of rumen fluid-floating microbiota and two metagenomic data sets. Fibrolytic rumen bacteria associate with plant polysaccharide and hydrolyze it in the rumen. We obtained a metatranscriptomic assembly from fiber-associating microbiota in three ruminally fistulated Holstein cows fed timothy (Phleum pratense) hay. Each metatranscriptomic data set involved over a thousand of the glycoside hydrolase (GH) gene transcripts that accounted for about 1% of total protein coding gene transcripts. Three-quarters of the total GH gene transcripts were dominated by non-structural oligosaccharide-acting hydrolase gene transcripts. In the fiber-associating microbiota, endo-cellulase coding gene families, especially GHs 9 and 5, were abundantly detected, and GHs 9, 11, 30 and 43, carbohydrate esterase 8 and carbohydrate-binding module 6 were characteristically detected. Most fibrolytic gene transcripts assigned to Fibrobacter succinogenes were detected in fiber-associating sections, and GHs 45, 44, 74, 11, 30 and 16 were Fibrobacter-characteristically detected. The metatranscriptomic assembly highlighted the characteristic fibrolytic enzymes expressed in the fiber-associated rumen microbiota and offered access to the fibrolytic activities in each fibrolytic bacteria.


Asunto(s)
Celulasas/genética , Fibrobacter/enzimología , Glicósido Hidrolasas/genética , Microbiota , Polisacáridos/metabolismo , Rumen/microbiología , Alimentación Animal , Animales , Bovinos , Femenino , Hidrólisis , Phleum/química
13.
Anim Sci J ; 87(5): 666-73, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26277986

RESUMEN

Although rumen bacterial communities vary depending on many factors such as diet, age and physiological conditions, a core microbiota exists within the rumen. In many natural environments, some bacteria use a quorum-sensing (QS) system to regulate their physiological activities. However, very limited information is available about QS systems in rumen. To investigate the autoinducer 2 (AI-2)-mediated QS system in rumen, we detected genes (luxS) encoding the AI-2 synthase (LuxS), from three datasets embedded in metagenomics RAST server (MG-RAST) and from a metatranscriptome dataset. We collected 135 luxS genes from the metagenomic datasets, which were presumed to originate from Bacteroidetes, Firmicutes, Fusobacteria and Actinobacteria, and 34 luxS genes from the metatranscriptome dataset, which probably originated from Bacteroidetes, Firmicutes and Spirochaetes. Because the essential amino acids for LuxS activity were conserved in the LuxS homologues predicted from luxS gene sequences from both datasets, the LuxS homologues probably function in the rumen. Since the largest number of sequences of luxS genes were collected from the genera Prevotella, Ruminococcus and Eubacterium, which include many fibrolytic bacteria and constituent members of biofilm on feed particles, an AI-2-mediated QS system is likely involved in biofilm formation and fibrolytic activity in the rumen.


Asunto(s)
Actinobacteria/genética , Proteínas Bacterianas/genética , Bacteroidetes/genética , Liasas de Carbono-Azufre/genética , Conjuntos de Datos como Asunto , Fusobacterias/genética , Metagenómica/métodos , Rumen/microbiología , Análisis de Secuencia/métodos , Transcriptoma , Animales , Biopelículas , Bovinos , Homoserina/análogos & derivados , Lactonas , Percepción de Quorum , Spirochaeta/genética
14.
Front Microbiol ; 6: 1087, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528253

RESUMEN

Japanese goats fed a diet of 50% Timothy grass and 50% concentrate with increasing levels of the anti-methanogenic compound, bromochloromethane (BCM) were investigated with respect to the microbial population and functional shifts in the rumen. Microbial ecology methods identified species that exhibited positive and negative responses to the increasing levels of BCM. The methane-inhibited rumen appeared to adapt to the higher H2 levels by shifting fermentation to propionate which was mediated by an increase in the population of H2-consuming Prevotella and Selenomonas spp. Metagenomic analysis of propionate production pathways was dominated by genomic content from these species. Reductive acetogenic marker gene libraries and metagenomics analysis indicate that reductive acetogenic species do not play a major role in the BCM treated rumen.

15.
FEMS Microbiol Ecol ; 88(3): 528-37, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24612331

RESUMEN

The phylotypes of rumen bacteria have increased by the accumulation of 16S rRNA gene sequences, and they show a complex microbial community structure in the rumen. However, most of the biochemical properties of rumen bacteria defined by phylotypes are still unknown. We attempted to improve the culturability of cellulolytic bacteria from the rumen using an agar medium (CA) and a gellan gum medium (CG) containing azo-carboxymethylcellulose as a carbon source. We isolated 129 strains from these media, and the numbers of isolates that showed filter paperase, carboxymethylcellulase and xylanase activity were 51, 117 and 105, respectively. The isolates were classified into six phyla by 16S rRNA gene sequences. In accordance with other studies, fibre-adherent rumen bacteria from the phylum Firmicutes were the most abundant cultured isolates obtained (82.2%). Isolates that were unclassified (< 97% similarity) totalled 19.4%, indicating that the media used in this study was successfully able to improve the culturability of rumen cellulolytic bacteria. Moreover, as the Chao1 richness of CG was higher than that of CA, we estimated that, compared with CA, CG supports the growth of a wide variety of rumen bacteria. These results demonstrate that culturable species of ruminal cellulolytic bacteria can be increased using improved culture media.


Asunto(s)
Bacterias/clasificación , Bacterias/enzimología , Rumen/microbiología , Agar , Animales , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Biodiversidad , Bovinos , Celulasa/metabolismo , Celulosa/metabolismo , Medios de Cultivo/química , Datos de Secuencia Molecular , Filogenia , Polisacáridos Bacterianos , ARN Ribosómico 16S/genética , Xilosidasas/metabolismo
16.
Anim Sci J ; 85(3): 227-32, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24128067

RESUMEN

Effect of cashew nut shell liquid (CNSL), a methane inhibitor, on bovine rumen fermentation was investigated through analysis of the metabolic hydrogen flow estimated from concentrations of short-chain fatty acids (SCFA) and methane. Three cows were fed a concentrate and hay diet without or with a CNSL-containing pellet. Two trials were conducted using CNSL pellets blended with only silica (trial 1) or with several other ingredients (trial 2). Methane production was measured in a respiration chamber system, and energy balance and nutrient digestibility were monitored. The estimated flow of metabolic hydrogen demonstrated that a part of metabolic hydrogen was used for hydrogen gas production, and a large amount of it flowed into production of methane and SCFA in both trial 1 and 2, when CNSL was administered to the bovine rumen. The results obtained by regression analyses showed that the effect of CNSL supply on methane reduction was coupled with a significant (P < 0.01) decrease of acetate and a significant (P < 0.01) increase of propionate and hydrogen gas. These findings reveal that CNSL is able to reduce methane and acetate production, and to increase hydrogen gas and propionate production in vivo.


Asunto(s)
Anacardium , Alimentación Animal , Bovinos/metabolismo , Hidrógeno/metabolismo , Rumen/metabolismo , Animales , Ácidos Grasos Volátiles/metabolismo , Femenino , Fermentación , Metano/metabolismo , Propionatos/metabolismo
17.
Anim Sci J ; 85(1): 25-31, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23638678

RESUMEN

Effect of the methane inhibitor, bromochloromethane (BCM) and dietary substrate, fumarate, on microbial community structure of acetogen bacteria in the bovine rumen was investigated through analysis of the formyltetrahydrofolate synthetase gene (fhs). The fhs sequences obtained from BCM-untreated, BCM-treated, fumarate-untreated and fumarate-treated bovine rumen were categorized into homoacetogens and nonhomoacetogenic bacteria by homoacetogen similarity scores. Phylogenetic tree analysis indicated that most of the fhs sequences categorized into homoacetogens were divided into nine clusters, which were in close agreement with a result shown in a self-organizing map. The diversity of the fhs sequences from the BCM-treated rumen was significantly different from those from BCM-non-treated rumen. Principal component analysis also showed that addition of BCM to the rumen altered the population structure of acetogenic bacteria significantly but the effect of fumarate was comparatively minor. These results indicate that BCM affects diversity of actogens in the bovine rumen, and changes in acetogenic community structure in response to methane inhibitors may be caused by different mechanisms.


Asunto(s)
Acetobacterium/efectos de los fármacos , Acetobacterium/enzimología , Carga Bacteriana/efectos de los fármacos , Bovinos/microbiología , Formiato-Tetrahidrofolato Ligasa/genética , Fumaratos/farmacología , Variación Genética/efectos de los fármacos , Variación Genética/genética , Hidrocarburos Halogenados/farmacología , Filogenia , Rumen/microbiología , Animales
18.
Anim Sci J ; 83(4): 299-304, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22515689

RESUMEN

Chemical composition and in situ degradation profiles were analyzed for 27 samples of dried distillers grains with solubles (DDGS) distributed in Japan, and a wide variation was found in neutral detergent fiber (NDF) content, which had positive relationships to detergent-insoluble crude proteins such as neutral detergent-insoluble crude protein (NDICP) and acid detergent-insoluble CP (ADICP). Samples with lower NDF (< 35% on dry matter (DM)) showed higher soluble fractions of protein, but the degradation rate of microbially degradable protein in the rumen was not different in comparison with the samples with higher NDF, and no difference was shown between samples with higher and lower NDF after 24 and 48 h of in situ incubation for DM and CP degradation, respectively. The NDICP content in the digestion residue decreased with time of incubation, especially for samples with higher NDF, while the ADICP content increased. These results suggest that a part of the soluble fraction of CP in DDGS would be incorporated into NDICP by the heating process in bio-ethanol production, which is still highly degradable, whereas another part of the fraction incorporated into ADICP would proceed to the advanced steps of irreversible amino-carbonyl reaction.


Asunto(s)
Bovinos/metabolismo , Fibras de la Dieta/metabolismo , Proteolisis , Rumen/metabolismo , Zea mays/química , Animales , Proteínas en la Dieta/metabolismo , Femenino , Proteínas de Plantas/metabolismo , Solubilidad
19.
Br J Nutr ; 108(3): 482-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22059589

RESUMEN

The effects of the anti-methanogenic compound, bromochloromethane (BCM), on rumen microbial fermentation and ecology were examined in vivo. Japanese goats were fed a diet of 50 % Timothy grass and 50 % concentrate and then sequentially adapted to low, mid and high doses of BCM. The goats were placed into the respiration chambers for analysis of rumen microbial function and methane and H2 production. The levels of methane production were reduced by 5, 71 and 91 %, and H2 production was estimated at 545, 2941 and 3496 mmol/head per d, in response to low, mid and high doses of BCM, respectively, with no effect on maintenance feed intake and digestibility. Real-time PCR quantification of microbial groups showed a significant decrease relative to controls in abundance of methanogens and rumen fungi, whereas there were increases in Prevotella spp. and Fibrobacter succinogenes, a decrease in Ruminococcus albus and R. flavefaciens was unchanged. The numbers of protozoa were also unaffected. Denaturing gradient gel electrophoresis and quantitative PCR analysis revealed that several Prevotella spp. were the bacteria that increased most in response to BCM treatment. It is concluded that the methane-inhibited rumen adapts to high hydrogen levels by shifting fermentation to propionate via Prevotella spp., but the majority of metabolic hydrogen is expelled as H2 gas.


Asunto(s)
Digestión/efectos de los fármacos , Cabras/fisiología , Hidrocarburos Halogenados/farmacología , Metano/antagonistas & inhibidores , Rumen/efectos de los fármacos , Rumen/microbiología , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Femenino , Fermentación/efectos de los fármacos , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Metano/biosíntesis , Prevotella/efectos de los fármacos , Prevotella/fisiología , Rumen/fisiología
20.
Appl Environ Microbiol ; 75(6): 1667-73, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19151184

RESUMEN

To extend our understanding of the mechanisms of plant cell wall degradation in the rumen, cellulose-binding proteins (CBPs) from the contents of a sheep rumen were directly isolated and identified using a metaproteomics approach. The rumen CBPs were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and some CBPs revealed endoglucanase activities toward carboxymethyl cellulose. Using mass spectrometry analyses, four CBPs were identified and annotated as known proteins from the predominant rumen cellulolytic bacterium Fibrobacter succinogenes: tetratricopeptide repeat domain protein, OmpA family protein, fibro-slime domain protein, and cellulose-binding endoglucanase F (EGF). Another CBP was identified as the cellulosomal glycosyl hydrolase family 6 exoglucanase, Cel6A, of Piromyces equi. F. succinogenes cells expressing EGF were found to be major members of the bacterial community on the surface or at the inner surface of hay stems by immunohistochemical analyses using anti-EGF antibody. The finding that four of the five CBPs isolated and identified from sheep rumen contents were from F. succinogenes indicates that F. succinogenes is significantly involved in cellulose degradation in the rumen.


Asunto(s)
Celulosa/metabolismo , Fibrobacter/enzimología , Piromyces/enzimología , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Rumen/química , Animales , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Unión Proteica , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA