RESUMEN
The present retrospective study aimed to examine the association between the expression of long non-protein-coding RNAs (lncRNAs) and clinical prognosis in the pretreatment formalin-fixed, paraffin-embedded (FFPE) tissue samples of cervical squamous cell carcinoma patients that underwent platinum-based chemoradiation therapy. Between 2001 and 2013, 49 consecutive patients with squamous cell cervical carcinoma were selected for the present study (median follow-up period, 44.1 months). The patients possessed an International Federation of Gynecology and Obstetrics stage of IB1/IIA1 (with pelvic lymph node metastasis), IB2 or IIA2-IVA, and had been treated with definitive chemoradiation therapy. The pretreatment FFPE tumor biopsies of the patients obtained diagnosis were used for analysis. Total RNAs were extracted from the FFPE tumor tissues and reverse transcription-quantitative polymerase chain reaction was performed to examine the expression level of lncRNAs. The expression level of X inactive-specific transcript (XIST) demonstrated a significant association with the overall survival rate (P=0.014). The 4-year overall survival rates were 87.1 and 54.4% in the high and low XIST expression groups, respectively. Since the expression of XIST is associated with the overall survival rate, this lncRNA has the potential to become a predictor for the prognosis of cervical squamous cell carcinoma patients that are treated with chemoradiation therapy. Additional studies are required to investigate the underlying mechanisms of XIST that are associated with prognosis.
RESUMEN
The Great East Japan Earthquake and subsequent TEPCO Fukushima Daiichi nuclear disaster occurred on 11 March 2011, which caused the leakage of radioactive materials into the environment. In this study, we report public concerns about radiation in Fukushima and Tokyo almost one year after the nuclear disaster. We examined the public concerns by analyzing the data from 1022 participants, 555 in Fukushima and 467 in Tokyo. They were asked whether they were concerned about radiation from some of six different types of sources, which could be answered in a binary way, 'yes' or 'no'. We found not only similarities, but also significant differences in the degrees of concerns between Fukushima residents and Tokyo ones. Fukushima residents more concerned about radiation from land, food and radon in larger rate than that of Tokyo ones, while Tokyo residents were concerned about radiation from medical care. Residents in neither location were concerned about radiation from space. Our results suggested that careful risk communication should be undertaken, adaptively organized depending on location and other factors, e.g. comprehension about radiation, presence of the experience of evacuation, and also age and gender of the people.
Asunto(s)
Ecosistema , Alimentos , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Radón/efectos adversos , Femenino , Humanos , Japón , Masculino , Persona de Mediana Edad , Análisis de RegresiónRESUMEN
Since the Great East Japan Earthquake on 11 March 2011, Iitate Village has continued to be classified as a deliberate evacuation area, in which residents are estimated to receive an annual additional effective radiation dose of >20 mSv. Some companies still operate in Iitate Village, with a special permit from the Cabinet Office Team in Charge of Assisting the Lives of Disaster Victims. In this study, we measured the annual effective radiation dose to workers in Iitate Village from 15 January to 13 December 2013. The workers stayed in Iitate for 10 h and left the village for the remaining 14 h each working day. They worked for 5 days each week in Iitate Village, but stayed outside of the village for the remaining 2 days each week. We found that the effective radiation dose of 70% of the workers was <2 mSv, including natural radiation; the maximum dose was 3.6 mSv. We estimated the potential annual additional effective radiation dose if people returned full-time to Iitate. Our analysis supports the plan for people to return to their home village at the end of 2017.
Asunto(s)
Terremotos , Accidente Nuclear de Fukushima , Plantas de Energía Nuclear , Monitoreo de Radiación , Adulto , Relación Dosis-Respuesta en la Radiación , Femenino , Geografía , Humanos , Japón , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Stress response mechanisms that modulate the dynamics of tRNA degradation and accumulation from the cytoplasm to the nucleus have been studied in yeast, the rat hepatoma and human cells. In the current study, we investigated tRNA degradation and accumulation in HeLa cells under various forms of stress. We found that initiator tRNA(Met) (tRNA(iMet)) was specifically degraded under heat stress. Two exonucleases, Xrn1 and Xrn2, are involved in the degradation of tRNA(iMet) in the cytoplasm and the nucleus, respectively. In addition to degradation, we observed accumulation of tRNA(iMet) in the nucleus. We also found that the mammalian target of rapamycin (mTOR), which regulates tRNA trafficking in yeast, is partially phosphorylated at Ser2448 in the presence of rapamycin and/or during heat stress. Our results suggest phosphorylation of mTOR may correlate with accumulation of tRNA(iMet) in heat-treated HeLa cells.
Asunto(s)
Núcleo Celular/metabolismo , Exorribonucleasas/metabolismo , Calor , Proteínas Asociadas a Microtúbulos/metabolismo , ARN de Transferencia de Metionina/metabolismo , Secuencia de Bases , Células HeLa , Humanos , Datos de Secuencia Molecular , ARN de Transferencia de Metionina/química , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
MALAT-1 noncoding RNA is localized to nuclear speckles despite its mRNA-like characteristics. Here, we report the identification of several key factors that promote the localization of MALAT-1 to nuclear speckles and also provide evidence that MALAT-1 is involved in the regulation of gene expression. Heterokaryon assays revealed that MALAT-1 does not shuttle between the nucleus and cytoplasm. RNAi-mediated repression of the nuclear speckle proteins, RNPS1, SRm160, or IBP160, which are well-known mRNA processing factors, resulted in the diffusion of MALAT-1 to the nucleoplasm. We demonstrated that MALAT-1 contains two distinct elements directing transcripts to nuclear speckles, which were also capable of binding to RNPS1 in vitro. Depletion of MALAT-1 represses the expression of several genes. Taken together, our results suggest that RNPS1, SRm160, and IBP160 contribute to the localization of MALAT-1 to nuclear speckles, where MALAT-1 could be involved in regulating gene expression.
Asunto(s)
Núcleo Celular/metabolismo , ARN no Traducido/metabolismo , Secuencia de Bases , Cartilla de ADN , Regulación hacia Abajo , Células HeLa , Humanos , Interferencia de ARN , ARN Largo no Codificante , ARN no Traducido/genéticaRESUMEN
The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA(Met) (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA(Met) was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.
Asunto(s)
Núcleo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Respuesta al Choque Térmico , ARN de Transferencia de Metionina/metabolismo , Gránulos Citoplasmáticos/efectos de los fármacos , Células HeLa , Calor , Humanos , ARN Polimerasa III/antagonistas & inhibidores , ARN Polimerasa III/metabolismo , Sirolimus/farmacologíaRESUMEN
Tob is a member of the anti-proliferative protein family, which functions in transcription and mRNA decay. We have previously demonstrated that Tob is involved in the general mechanism of mRNA decay by mediating mRNA deadenylation through interaction with Caf1 and a general RNA-binding protein, PABPC1. Here, we focus on the role of Tob in the regulation of specific mRNA. We show that Tob binds directly to a sequence-specific RNA-binding protein, cytoplasmic polyadenylation element-binding protein 3 (CPEB3). CPEB3 negatively regulates the expression of a target by accelerating deadenylation and decay of its mRNA, which it achieves by tethering to the mRNA. The carboxyl-terminal RNA-binding domain of CPEB3 binds to the carboxyl-terminal unstructured region of Tob. Tob then binds Caf1 deadenylase and recruits it to CPEB3 to form a ternary complex. The CPEB3-accelerated deadenylation was abrogated by a dominant-negative mutant of either Caf1 or Tob. Together, these results indicate that Tob mediates the recruitment of Caf1 to the target of CPEB3 and elicits deadenylation and decay of the mRNA. Our results provide an explanation of how Tob regulates specific biological processes.
Asunto(s)
Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Proteínas Supresoras de Tumor/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismoRESUMEN
OBJECTIVE: Insulin increases, through several molecular mechanisms, expression of plasminogen activator inhibitor-1 (PAI-1), the major physiologic inhibitor of fibrinolysis. This phenomenon has been implicated as a cause of accelerated coronary artery disease and the increased incidence of acute coronary syndromes associated with type 2 diabetes. We have previously reported that physiologic and pharmacologic concentrations of insulin induce PAI-1 synthesis in human HepG2 cells and that simvastatin can attenuate its effects. This study was performed to further elucidate mechanisms responsible for the insulin-induced PAI-1 production. METHODS: Concentrations of PAI-1 mRNA were determined by real-time PCR, and PAI-1 protein was assayed by western blotting. PAI-1 promoter (-829 to +36 bp) activity was assayed with the use of luciferase reporter assays. The potential role of the 3'-untranslated region (UTR) in the PAI-1 gene was assayed with the use of luciferase constructs containing the 3'-UTR. Oxidative stress was measured by loading cells with carboxy-2,7 dichlorodihydrofluorescein. RESULTS: Insulin increased PAI-1 promoter activity, PAI-1 mRNA, and accumulation of PAI-1 protein in the conditioned media. Insulin-inducible PAI-1 promoter activity was attenuated by simvastatin. Experiments performed with luciferase reporters containing the 3'-UTR showed that insulin increased luciferase activity through this region. Insulin also increased oxidative stress. Both insulin-inducible luciferase activity through the 3'-UTR and oxidative stress were attenuated by simvastatin. CONCLUSION: Insulin can increase PAI-1 expression through multiple mechanisms including induction mediated by the 3'-UTR of the PAI-1 gene. Accordingly, beneficial pleiotropic effects of statins on coronary artery disease may be attributable, in part, to attenuation of overexpression of PAI-1 mediated by the 3'-UTR in syndromes of insulin resistance (such as the metabolic syndrome) and type 2 diabetes.