Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38652464

RESUMEN

OTULIN-related autoinflammatory syndrome (ORAS), a severe autoinflammatory disease, is caused by biallelic pathogenic variants of OTULIN, a linear ubiquitin-specific deubiquitinating enzyme. Loss of OTULIN attenuates linear ubiquitination by inhibiting the linear ubiquitin chain assembly complex (LUBAC). Here, we report a patient who harbors two rare heterozygous variants of OTULIN (p.P152L and p.R306Q). We demonstrated accumulation of linear ubiquitin chains upon TNF stimulation and augmented TNF-induced cell death in mesenchymal stem cells differentiated from patient-derived iPS cells, which confirms that the patient has ORAS. However, although the de novo p.R306Q variant exhibits attenuated deubiquitination activity without reducing the amount of OTULIN, the deubiquitination activity of the p.P152L variant inherited from the mother was equivalent to that of the wild-type. Patient-derived MSCs in which the p.P152L variant was replaced with wild-type also exhibited augmented TNF-induced cell death and accumulation of linear chains. The finding that ORAS can be caused by a dominant-negative p.R306Q variant of OTULIN furthers our understanding of disease pathogenesis.


Asunto(s)
Ubiquitinación , Femenino , Humanos , Endopeptidasas/genética , Endopeptidasas/metabolismo , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Autoinflamatorias Hereditarias/patología , Enfermedades Autoinflamatorias Hereditarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Mutación , Linaje , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Ubiquitina/metabolismo , Recién Nacido
2.
Pediatr Int ; 66(1): e15760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38641939

RESUMEN

Diseases are caused by genetic and/or environmental factors. It is important to understand the pathomechanism of monogenic diseases that are caused only by genetic factors, especially prenatal- or childhood-onset diseases for pediatricians. Identifying "novel" disease genes and elucidating how genomic changes lead to human phenotypes would develop new therapeutic approaches for rare diseases for which no fundamental cure has yet been established. Genomic analysis has evolved along with the development of analytical techniques, from Sanger sequencing (first-generation sequencing) to techniques such as comparative genomic hybridization, massive parallel short-read sequencing (using a next-generation sequencer or second-generation sequencer) and long-read sequencing (using a next-next generation sequencer or third-generation sequencer). I have been researching human genetics using conventional and new technologies, together with my mentors and numerous collaborators, and have identified genes responsible for more than 60 diseases. Here, an overview of genomic analyses of monogenic diseases that aims to identify novel disease genes, and several examples using different approaches depending on the disease characteristics are presented.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Niño , Hibridación Genómica Comparativa , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
BMC Neurol ; 24(1): 119, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605286

RESUMEN

BACKGROUND: Ischemic stroke in young adults can be caused by a variety of etiologies including the monogenic disorders. Visceral heterotaxy is a condition caused by abnormal left-right determinations during embryonic development. We aimed to determine the cause of a young ischemic stroke patient with visceral heterotaxy. CASE PRESENTATION: We performed neurological, radiological, and genetic evaluations in a 17-year-old male patient presenting ischemic stroke and visceral heterotaxy to determine the underlying cause of this rare disease combination. Brain magnetic resonance imaging (MRI) showed evidence of embolic stroke, abdominal computed tomography (CT) showed visceral heterotaxy, and echocardiogram showed cardiac anomaly with right-to-left-shunt (RLS). Whole genome sequencing (WGS) revealed a heterozygous missense variant (NM_018055.5: c.1016 T > C, p.(Met339Val)) in the NODAL gene, which is essential to the determination of the left-right body axis. CONCLUSIONS: Our study highlights the importance of evaluating genetic etiology in young ischemic stroke and the need for stroke risk management in visceral heterotaxy patients with RLS. To the best of our knowledge, we report the first genetically-confirmed case of visceral heterotaxy with young embolic stroke reported to date.


Asunto(s)
Accidente Cerebrovascular Embólico , Síndrome de Heterotaxia , Adolescente , Humanos , Masculino , Anomalías Cardiovasculares , Síndrome de Heterotaxia/genética , Imagen por Resonancia Magnética , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/genética
4.
Am J Hum Genet ; 111(3): 487-508, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38325380

RESUMEN

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Asunto(s)
Hiperparatiroidismo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Femenino , Animales , Humanos , Discapacidad Intelectual/patología , Pez Cebra/genética , Mutación Missense/genética , Factores de Transcripción/genética , Fenotipo , Trastornos del Neurodesarrollo/genética
5.
J Med Genet ; 61(6): 590-594, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38228391

RESUMEN

Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by (epi)genetic alterations at 11p15. Because approximately 20% of patients test negative via molecular testing of peripheral blood leukocytes, the concept of Beckwith-Wiedemann spectrum (BWSp) was established to encompass a broader cohort with diverse and overlapping phenotypes. The prevalence of other overgrowth syndromes concealed within molecularly negative BWSp remains unexplored. Methods We conducted whole-exome sequencing (WES) on 69 singleton patients exhibiting molecularly negative BWSp. Variants were confirmed by Sanger sequencing or quantitative genomic PCR. We compared BWSp scores and clinical features between groups with classical BWS (cBWS), atypical BWS or isolated lateralised overgrowth (aBWS+ILO) and overgrowth syndromes identified via WES. Results Ten patients, one classified as aBWS and nine as cBWS, showed causative gene variants for Simpson-Golabi-Behmel syndrome (five patients), Sotos syndrome (two), Imagawa-Matsumoto syndrome (one), glycosylphosphatidylinositol biosynthesis defect 11 (one) or 8q duplication/9p deletion (one). BWSp scores did not distinguish between cBWS and other overgrowth syndromes. Birth weight and height in other overgrowth syndromes were significantly larger than in aBWS+ILO and cBWS, with varying intergroup frequencies of clinical features. Conclusion Molecularly negative BWSp encapsulates other syndromes, and considering both WES and clinical features may facilitate accurate diagnosis.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Secuenciación del Exoma , Humanos , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patología , Síndrome de Beckwith-Wiedemann/diagnóstico , Masculino , Femenino , Lactante , Preescolar , Niño , Fenotipo , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/patología , Variación Genética , Mutación/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-38217091

RESUMEN

A 53-year-old man with adult-onset Still's disease developed severe streptococcal toxic shock syndrome (STSS) due to Streptococcus dysgalactiae subsp. equisimilis (SDSE), following retroperitoneal panniculitis. He was receiving tocilizumab (TCZ), an interleukin-6 receptor inhibitor. The modifying effect of TCZ on the immune response and the pathophysiology of SDSE infection may have led to retroperitoneal panniculitis and atypical STSS with delayed shock and flare of soft tissue inflammation.

7.
Am J Med Genet A ; 194(2): 268-278, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37815018

RESUMEN

Kabuki syndrome (KS) is characterized by growth impairment, psychomotor delay, congenital heart disease, and distinctive facial features. KMT2D and KDM6A have been identified as the causative genes of KS. Craniosynostosis (CS) has been reported in individuals with KS; however, its prevalence and clinical implications remain unclear. In this retrospective study, we investigated the occurrence of CS in individuals with genetically diagnosed KS and examined its clinical significance. Among 42 individuals with genetically diagnosed KS, 21 (50%) exhibited CS, with 10 individuals requiring cranioplasty. No significant differences were observed based on sex, causative gene, and molecular consequence among individuals with KS who exhibited CS. Both individuals who underwent evaluation with three-dimensional computed tomography (3DCT) and those who required surgery tended to exhibit cranial dysmorphology. Notably, in several individuals, CS was diagnosed before KS, suggesting that CS could be one of the clinical features by which clinicians can diagnose KS. This study highlights that CS is one of the noteworthy complications in KS, emphasizing the importance of monitoring cranial deformities in the health management of individuals with KS. The findings suggest that in individuals where CS is a concern, conducting 3DCT evaluations for CS and digital impressions are crucial.


Asunto(s)
Anomalías Múltiples , Craneosinostosis , Cara/anomalías , Enfermedades Hematológicas , Enfermedades Vestibulares , Humanos , Estudios Retrospectivos , Prevalencia , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/epidemiología , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/epidemiología , Enfermedades Vestibulares/genética , Craneosinostosis/complicaciones , Craneosinostosis/diagnóstico , Craneosinostosis/epidemiología , Histona Demetilasas/genética , Mutación
8.
Clin Genet ; 105(1): 72-76, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526414

RESUMEN

KDM4B (MIM*609765, NM_015015.3, formerly JMJD2B) encodes a histone demethylase and regulates gene expression via demethylation, mainly of H3K9 tri-methylation. Heterozygous KDM4B loss-of-function variants cause autosomal dominant intellectual developmental disorder 65 (MIM#619320), which is characterized by global developmental delay, intellectual disability, language and gross motor delays, structural brain anomalies, characteristic facial features, and clinodactyly. Although the majority of reported patients have de novo pathogenic variants, some patients inherit pathogenic variants from affected parents. To our knowledge, only 23 patients with heterozygous KDM4B variants have been reported to date, and there are no reports of patients with biallelic KDM4B pathogenic variants. Herein, we report a female patient with a biallelic KDM4B frameshift variant (NM_015015.3: c.1384_1394delinsGGG, p.(Leu462Glyfs*43)) located at exon 12 of 23 protein-coding exons, which is thought to be subject to nonsense-mediated mRNA decay and no protein production. She presented developmental and language delays and a hypotonic and characteristic face. The patient's phenotype was more obvious than that of her mother, who is heterozygous for the same variant. Although declining birth rate (embryonic lethality in male mice) in homozygous knockout mice has been demonstrated, our report suggests that homozygous KDM4B frameshift variants can be viable in humans at least female.


Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Humanos , Masculino , Femenino , Animales , Ratones , Mutación del Sistema de Lectura/genética , Exones , Fenotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/genética , Histona Demetilasas con Dominio de Jumonji/genética
9.
Yonago Acta Med ; 66(4): 463-466, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38028263

RESUMEN

Noonan syndrome is an autosomal dominant disease characterized by multi-organ disorders caused by variants of genes involved in the RAS/MAPK signaling pathway. The nine causative genes including PTPN11 and CBL have been identified. Mastocytosis is a disease characterized by mast cell proliferation in skin, bone marrow, and other organs. To date, no previous cases of Noonan syndrome with mastocytosis caused by a pathogenic CBL variant have been reported. A boy was diagnosed with Noonan syndrome at 8 months of age with facial features and minor anomaly of his body. He presented with brown nodules of 5-10 mm on his body since the age of 2 months. The patient was diagnosed with mastocytosis by a biopsy specimen from brown nodules, which showed infiltration of mast cells. Whole-exome sequencing of the parent-patient trio revealed a de novo pathogenic CBL variant. The occurrence of mastocytosis may be a cue for the analysis of the CBL gene in Noonan syndrome. The CBL gene is involved in mastocytosis and various cancers. In the case of the pathogenic variant, long-term follow-up for the risk of cancers related to the CBL variant is necessary.

10.
Med Mycol ; 61(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37312399

RESUMEN

Breakthrough candidemia (BrC) is a significant problem in immunocompromised patients, particularly those with hematological disorders. To assess the characteristics of BrC in patients with hematologic disease treated with novel antifungal agents, we collected clinical and microbiological information on said patients from 2009 to 2020 in our institution. Forty cases were identified, of which 29 (72.5%) received hematopoietic stem cell transplant (HSCT)-related therapy. At BrC onset, the most administered class of antifungal agents were echinocandins, administered to 70% of patients. Candida guilliermondii complex was the most frequently isolated species (32.5%), followed by C. parapsilosis (30%). These two isolates were echinocandin-susceptible in vitro but had naturally occurring FKS gene polymorphisms that reduced echinocandin susceptibility. Frequent isolation of these echinocandin-reduced-susceptible strains in BrC may be associated with the widespread use of echinocandins. In this study, the 30-day crude mortality rate in the group receiving HSCT-related therapy was significantly higher than in the group not receiving it (55.2% versus 18.2%, P = .0297). Most patients affected by C. guilliermondii complex BrC (92.3%) received HSCT-related therapy and had a 30-day mortality rate of 53.8%; despite treatment administration, 3 of 13 patients had persistent candidemia. Based on our results, C. guilliermondii complex BrC is a potentially fatal condition in patients receiving HSCT-related therapy with echinocandin administration.


This retrospective study was conducted at a Japanese center specializing in hematopoietic stem cell transplants and found that the rare pathogen Candida guilliermondii complex was the most common cause of breakthrough candidemia, with high mortality rate, which is a concern for transplant patients.


Asunto(s)
Candidemia , Enfermedades Hematológicas , Animales , Candidemia/tratamiento farmacológico , Candidemia/epidemiología , Candidemia/microbiología , Candidemia/veterinaria , Antifúngicos/uso terapéutico , Estudios Retrospectivos , Candida , Japón/epidemiología , Equinocandinas/uso terapéutico , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/veterinaria , Pruebas de Sensibilidad Microbiana/veterinaria
11.
Am J Hum Genet ; 110(7): 1068-1085, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352860

RESUMEN

ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.


Asunto(s)
Exorribonucleasas , Histonas , Humanos , Exorribonucleasas/genética , Histonas/genética , Mutación Missense/genética , ARN Ribosómico 5.8S , ARN , ARN Mensajero/genética
12.
Genes (Basel) ; 14(5)2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-37239439

RESUMEN

Musculocontractural Ehlers-Danlos syndrome (mcEDS) is a heritable connective tissue disorder characterized by multiple congenital malformations and progressive connective-tissue-fragility-related manifestations in the cutaneous, skeletal, cardiovascular, visceral, ocular, and gastrointestinal systems. It is caused by pathogenic variants in the carbohydrate sulfotransferase 14 gene (mcEDS-CHST14) or in the dermatan sulfate epimerase gene (mcEDS-DSE). As gastrointestinal complications of mcEDS-CHST14, diverticula in the colon, small intestine, or stomach have been reported, which may lead to gastrointestinal perforation, here, we describe sisters with mcEDS-CHST14, who developed colonic perforation with no evidence of diverticula and were successfully treated through surgery (a resection of perforation site and colostomy) and careful postoperative care. A pathological investigation did not show specific abnormalities of the colon at the perforation site. Patients with mcEDS-CHST14 aged from the teens to the 30s should undergo not only abdominal X-ray photography but also abdominal computed tomography when they experience abdominal pain.


Asunto(s)
Divertículo , Síndrome de Ehlers-Danlos , Adolescente , Humanos , Sulfotransferasas/genética , Síndrome de Ehlers-Danlos/complicaciones , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/cirugía , Piel/patología , Proteínas de Unión al ADN/genética , Divertículo/patología
13.
Int Med Case Rep J ; 16: 201-207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007669

RESUMEN

Platypnea-orthodeoxia syndrome (POS) is a rare disorder associated with coronavirus disease 2019 (COVID-19) pneumonia. However, POS may be underdiagnosed. We report the case of a 59-year-old female patient with POS complicated by pulmonary embolism in COVID-19. Imaging revealed ground-glass opacities predominantly in the lower lobes and a pulmonary embolus in the right upper lobe. She was diagnosed with POS due to marked postural discrepancies between supine and upright oxygen saturations and blood oxygenation. Intracardiac shunt, one of the etiologies of POS, was not detected by bubble contrast echocardiography, and postural de-saturation gradually improved with methylprednisolone and edoxaban administration. In our literature review, only 3 of the 16 patients with POS associated with COVID-19 had cardiac shunting, suggesting that moderate to severe COVID-19 causes POS without cardiac shunts. COVID-19-associated vasculopathy and lower lung lesion predominance in COVID-19 pneumonia may cause ventilation-perfusion mismatch due to gravitational shunting of blood into the poorly ventilated lower lungs in the upright position, which may ultimately cause POS. Hypoxemia impedes rehabilitation, whereas early initiation of supine positioning in bed, with knowledge of the pathophysiology of POS, may have a positive effect.

15.
Acta Neuropathol Commun ; 11(1): 33, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864519

RESUMEN

Focal cortical dysplasia is the most common malformation during cortical development, sometimes excised by epilepsy surgery and often caused by somatic variants of the mTOR pathway genes. In this study, we performed a genetic analysis of epileptogenic brain malformed lesions from 64 patients with focal cortical dysplasia, hemimegalencephy, brain tumors, or hippocampal sclerosis. Targeted sequencing, whole-exome sequencing, and single nucleotide polymorphism microarray detected four germline and 35 somatic variants, comprising three copy number variants and 36 single nucleotide variants and indels in 37 patients. One of the somatic variants in focal cortical dysplasia type IIB was an in-frame deletion in MTOR, in which only gain-of-function missense variants have been reported. In focal cortical dysplasia type I, somatic variants of MAP2K1 and PTPN11 involved in the RAS/MAPK pathway were detected. The in-frame deletions of MTOR and MAP2K1 in this study resulted in the activation of the mTOR pathway in transiently transfected cells. In addition, the PTPN11 missense variant tended to elongate activation of the mTOR or RAS/MAPK pathway, depending on culture conditions. We demonstrate that epileptogenic brain malformed lesions except for focal cortical dysplasia type II arose from somatic variants of diverse genes but were eventually linked to the mTOR pathway.


Asunto(s)
Neoplasias Encefálicas , Displasia Cortical Focal , Malformaciones del Desarrollo Cortical de Grupo I , Malformaciones del Sistema Nervioso , Humanos , Malformaciones del Desarrollo Cortical de Grupo I/genética , Encéfalo
16.
Eur J Hum Genet ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973392

RESUMEN

Autism spectrum disorder (ASD) is caused by combined genetic and environmental factors. Genetic heritability in ASD is estimated as 60-90%, and genetic investigations have revealed many monogenic factors. We analyzed 405 patients with ASD using family-based exome sequencing to detect disease-causing single-nucleotide variants (SNVs), small insertions and deletions (indels), and copy number variations (CNVs) for molecular diagnoses. All candidate variants were validated by Sanger sequencing or quantitative polymerase chain reaction and were evaluated using the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines for molecular diagnosis. We identified 55 disease-causing SNVs/indels in 53 affected individuals and 13 disease-causing CNVs in 13 affected individuals, achieving a molecular diagnosis in 66 of 405 affected individuals (16.3%). Among the 55 disease-causing SNVs/indels, 51 occurred de novo, 2 were compound heterozygous (in one patient), and 2 were X-linked hemizygous variants inherited from unaffected mothers. The molecular diagnosis rate in females was significantly higher than that in males. We analyzed affected sibling cases of 24 quads and 2 quintets, but only one pair of siblings shared an identical pathogenic variant. Notably, there was a higher molecular diagnostic rate in simplex cases than in multiplex families. Our simulation indicated that the diagnostic yield is increasing by 0.63% (range 0-2.5%) per year. Based on our simple simulation, diagnostic yield is improving over time. Thus, periodical reevaluation of ES data should be strongly encouraged in undiagnosed ASD patients.

17.
Exp Cell Res ; 424(1): 113503, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731710

RESUMEN

Most lung adenocarcinoma-associated EGFR tyrosine kinase mutations are either an exon 19 deletion (19Del) or L858R point mutation in exon 21. Although patients whose tumors contain either of these mutations exhibit increased sensitivity to tyrosine kinase inhibitors, progression-free and overall survival appear to be longer in patients with 19Del than in those with L858R. In mutant-transfected Ba/F3 cells, 19Del and L858R were compared by multi-omics analyses including proteomics, transcriptomics, and metabolomics. Proteome analysis identified increased plastin-2, TKT, PDIA5, and ENO1 expression in L858R cells, and increased EEF1G expression in 19Del cells. RNA sequencing showed significant differences between 19Del and L858R cells in 112 genes. Metabolome analysis showed that amino acids, adenylate, guanylate, NADPH, lactic acid, pyruvic acid glucose 6-phosphate, and ribose 5-phosphate were significantly different between the two mutant cells. Because GSH was increased with L858R, we combined osimertinib with the GSH inhibitor buthionine sulfoximine in L858R cells and observed synergistic effects. The complexity of EGFR 19Del and L858R mutant cells was demonstrated by proteomics, transcriptomics, and metabolomics analyses. Therapeutic strategies for lung cancer with different EGFR mutations could be considered because of their different metabolic phenotypes.


Asunto(s)
Neoplasias Pulmonares , Proteómica , Humanos , Transcriptoma , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación/genética , Exones , Inhibidores de Proteínas Quinasas/farmacología
18.
Sci Rep ; 13(1): 975, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653413

RESUMEN

The Drosophila behavior/human splicing protein family is involved in numerous steps of gene regulation. In humans, this family consists of three proteins: SFPQ, PSPC1, and NONO. Hemizygous loss-of-function (LoF) variants in NONO cause a developmental delay with several complications (e.g., distinctive facial features, cardiac symptoms, and skeletal symptoms) in an X-linked recessive manner. Most of the reported variants have been LoF variants, and two missense variants have been reported as likely deleterious but with no functional validation. We report three individuals from two families harboring an identical missense variant that is located in the nuclear localization signal, NONO: NM_001145408.2:c.1375C > G p.(Pro459Ala). All of them were male and the variant was inherited from their asymptomatic mothers. Individual 1 was diagnosed with developmental delay and cardiac phenotypes (ventricular tachycardia and dilated cardiomyopathy), which overlapped with the features of reported individuals having NONO LoF variants. Individuals 2 and 3 were monozygotic twins. Unlike in Individual 1, developmental delay with autistic features was the only symptom found in them. A fly experiment and cell localization experiment showed that the NONO variant impaired its proper intranuclear localization, leading to mild LoF. Our findings suggest that deleterious NONO missense variants should be taken into consideration when whole-exome sequencing is performed on male individuals with developmental delay with or without cardiac symptoms.


Asunto(s)
Cardiomiopatía Dilatada , Proteínas de Unión al ADN , Corazón , Mutación Missense , Proteínas de Unión al ARN , Femenino , Humanos , Masculino , Cardiomiopatía Dilatada/genética , Proteínas de Unión al ADN/genética , Fenotipo , Proteínas de Unión al ARN/genética
19.
Clin Genet ; 103(5): 590-595, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36576140

RESUMEN

AFF3 at 2q11.2 encodes the nuclear transcriptional activator AF4/FMR2 Family Member 3. AFF3 constitutes super elongation complex like 3, which plays a role in promoting the expression of genes involved in neurogenesis and development. The degron motif in AFF3 with nine highly conserved amino acids is recognized by E3 ubiquitin ligase to induce protein degradation. Recently, AFF3 missense variants in this region and variants featuring deletion including this region were identified and shown to cause KINSSHIP syndrome. In this study, we identified two novel and one previously reported missense variants in the degron of AFF3 in three unrelated Japanese patients. Notably, two of these three variants exhibited mosaicism in the examined tissues. This study suggests that mosaic variants also cause KINSSHIP syndrome, showing various phenotypes.


Asunto(s)
Células Germinativas , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Fenotipo , Proteínas Nucleares
20.
Hum Genome Var ; 9(1): 39, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357380

RESUMEN

We report on a patient with a distal 16.4-Mb duplication at 2q36.3-qter, who presented with severe intellectual disability, microcephaly, brachycephaly, prominent forehead, hypertelorism, prominent eyes, thin upper lip, and progenia. Copy number analysis using whole exome data detected a distal 2q duplication. This is the first report describing a distal 2q duplication at the molecular level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA