Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Commun ; 15(1): 8661, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370447

RESUMEN

Selective vulnerability offers a conceptual framework for understanding neurodegenerative disorders such as Parkinson's disease, where specific neuronal types are selectively affected and adjacent ones are spared. However, the applicability of this framework to neurodevelopmental disorders, particularly those characterized by atypical social behaviors, such as autism spectrum disorder, remains uncertain. Here we show that an embryonic disturbance, known to induce social dysfunction in male mice, preferentially impaired the gene expression crucial for neural functions in parvocellular oxytocin (OT) neurons-a subtype linked to social rewards-while neighboring cell types experienced a lesser impact. Chemogenetic stimulation of OT neurons at the neonatal stage ameliorated social deficits in early adulthood, concurrent with cell-type-specific sustained recovery of pivotal gene expression within parvocellular OT neurons. Collectively, our data shed light on the transcriptomic selective vulnerability within the hypothalamic social behavioral center and provide a potential therapeutic target through specific neonatal neurostimulation.


Asunto(s)
Neuronas , Oxitocina , Conducta Social , Animales , Oxitocina/metabolismo , Neuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Hipotálamo/metabolismo , Modelos Animales de Enfermedad , Conducta Animal/fisiología , Femenino , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Transcriptoma
2.
Nat Commun ; 15(1): 6054, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025867

RESUMEN

The homeostatic regulation of sleep is characterized by rebound sleep after prolonged wakefulness, but the molecular and cellular mechanisms underlying this regulation are still unknown. In this study, we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent activity control of parvalbumin (PV)-expressing cortical neurons is involved in homeostatic regulation of sleep in male mice. Prolonged wakefulness enhances cortical PV-neuron activity. Chemogenetic suppression or activation of cortical PV neurons inhibits or induces rebound sleep, implying that rebound sleep is dependent on increased activity of cortical PV neurons. Furthermore, we discovered that CaMKII kinase activity boosts the activity of cortical PV neurons, and that kinase activity is important for homeostatic sleep rebound. Here, we propose that CaMKII-dependent PV-neuron activity represents negative feedback inhibition of cortical neural excitability, which serves as the distributive cortical circuits for sleep homeostatic regulation.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Corteza Cerebral , Homeostasis , Neuronas , Parvalbúminas , Sueño , Vigilia , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Parvalbúminas/metabolismo , Masculino , Sueño/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Vigilia/fisiología , Corteza Cerebral/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Neurosci Res ; 196: 1-10, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37343600

RESUMEN

In recent decades, human fathers across the globe have shown a substantial increase in their engagement in paternal caregiving behaviors. Despite the growing interest, the precise neurobiological mechanisms underlying caregiving behaviors in males remain unclear. Neurobiological studies conducted on rodents have advanced our understanding of the molecular, cellular, and circuit-level mechanisms. Typically, sexually naïve males exhibit aggression toward offspring, while fathers display parental behaviors. This drastic behavioral plasticity may be associated with changes in connections among specific regions or cell types. Recent studies have begun to describe this structural plasticity by comparing neural connections before and after fatherhood. In this Perspective, we summarize the findings from four well-studied rodent species, namely prairie voles, California mice, laboratory rats, and laboratory mice, with a view toward integrating past and current progress. We then review recent advances in the understanding of structural plasticity for parental behaviors. Finally, we discuss remaining questions that require further exploration to gain a deeper understanding of the neural mechanisms underlying paternal behaviors in males, including their possible implications for the human brain.


Asunto(s)
Encéfalo , Roedores , Animales , Masculino , Humanos , Encéfalo/metabolismo , Conducta Paterna , Neuronas/metabolismo , Arvicolinae , Padres
4.
PLoS One ; 18(5): e0285589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37163565

RESUMEN

Breastfeeding, which is essential for the survival of mammalian infants, is critically mediated by pulsatile secretion of the pituitary hormone oxytocin from the central oxytocin neurons located in the paraventricular and supraoptic hypothalamic nuclei of mothers. Despite its importance, the molecular and neural circuit mechanisms of the milk ejection reflex remain poorly understood, in part because a mouse model to study lactation was only recently established. In our previous study, we successfully introduced fiber photometry-based chronic imaging of the pulsatile activities of oxytocin neurons during lactation. However, the necessity of Cre recombinase-based double knock-in mice substantially compromised the use of various Cre-dependent neuroscience toolkits. To overcome this obstacle, we developed a simple Cre-free method for monitoring oxytocin neurons by an adeno-associated virus vector driving GCaMP6s under a 2.6 kb mouse oxytocin mini-promoter. Using this method, we monitored calcium ion transients of oxytocin neurons in the paraventricular nucleus in wild-type C57BL/6N and ICR mothers without genetic crossing. By combining this method with video recordings of mothers and pups, we found that the pulsatile activities of oxytocin neurons require physical mother-pup contact for the milk ejection reflex. Notably, the frequencies of photometric signals were dynamically modulated by mother-pup reunions after isolation and during natural weaning stages. Collectively, the present study illuminates the temporal dynamics of pulsatile activities of oxytocin neurons in wild-type mice and provides a tool to characterize maternal oxytocin functions.


Asunto(s)
Lactancia , Oxitocina , Femenino , Ratones , Animales , Lactancia/fisiología , Oxitocina/fisiología , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Neuronas/fisiología , Núcleo Supraóptico/fisiología , Núcleo Hipotalámico Paraventricular , Mamíferos
5.
Elife ; 122023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37223988

RESUMEN

Reproductive senescence is broadly observed across mammalian females, including humans, eventually leading to a loss of fertility. The pulsatile secretion of gonadotropin-releasing hormone (GnRH), which is essential for gonad function, is primarily controlled by kisspeptin neurons in the hypothalamic arcuate nucleus (ARCkiss), the pulse generator of GnRH. The pulsatility of GnRH release, as assessed by the amount of circulating gonadotropin, is markedly reduced in aged animals, suggesting that the malfunctions of ARCkiss may be responsible for reproductive aging and menopause-related disorders. However, the activity dynamics of ARCkiss during the natural transition to reproductive senescence remain unclear. Herein, we introduce chronic in vivo Ca2+ imaging of ARCkiss in female mice by fiber photometry to monitor the synchronous episodes of ARCkiss (SEskiss), a known hallmark of GnRH pulse generator activity, from the fully reproductive to acyclic phase over 1 year. During the reproductive phase, we find that not only the frequency, but also the intensities and waveforms of individual SEskiss, vary depending on the stage of the estrus cycle. During the transition to reproductive senescence, the integrity of SEskiss patterns, including the frequency and waveforms, remains mostly unchanged, whereas the intensities tend to decline. These data illuminate the temporal dynamics of ARCkiss activities in aging female mice. More generally, our findings demonstrate the utility of fiber-photometry-based chronic imaging of neuroendocrine regulators in the brain to characterize aging-associated malfunction.


Asunto(s)
Kisspeptinas , Neuronas , Reproducción , Animales , Femenino , Ratones , Envejecimiento , Hormona Liberadora de Gonadotropina
6.
PLoS One ; 18(3): e0283152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36930664

RESUMEN

The hormone oxytocin, secreted from oxytocin neurons in the paraventricular (PVH) and supraoptic (SO) hypothalamic nuclei, promotes parturition, milk ejection, and maternal caregiving behaviors. Previous experiments with whole-body oxytocin knockout mice showed that milk ejection was the unequivocal function of oxytocin, whereas parturition and maternal behaviors were less dependent on oxytocin. Whole-body knockout, however, could induce the enhancement of expression of related gene(s), a phenomenon called genetic compensation, which may hide the actual functions of oxytocin. In addition, the relative contributions of oxytocin neurons in the PVH and SO have not been well documented. Here, we show that females with conditional knockout of oxytocin gene in both the PVH and SO undergo grossly normal parturition and maternal caregiving behaviors, while dams with a smaller number of remaining oxytocin-expressing neurons exhibit severe impairments in breastfeeding, leading to the death of their pups within 24 hours after birth. We also found that the growth of pups is normal even under oxytocin conditional knockout in PVH and SO as long as pups survive the next day of delivery, suggesting that the reduced oxytocin release affects the onset of lactation most severely. These phenotypes are largely recapitulated by SO-specific oxytocin conditional knockout, indicating the unequivocal role of oxytocin neurons in the SO in successful breastfeeding. Given that oxytocin neurons not only secrete oxytocin but also non-oxytocin neurotransmitters or neuropeptides, we further performed cell ablation of oxytocin neurons in the PVH and SO. We found that cell ablation of oxytocin neurons leads to no additional abnormalities over the oxytocin conditional knockout, suggesting that non-oxytocin ligands expressed by oxytocin neurons have negligible functions on the responses measured in this study. Collectively, our findings confirm the dispensability of oxytocin for parturition or maternal behaviors, as well as the importance of SO-derived oxytocin for breastfeeding.


Asunto(s)
Oxitocina , Núcleo Supraóptico , Femenino , Ratones , Animales , Oxitocina/farmacología , Núcleo Supraóptico/metabolismo , Neuronas/metabolismo , Hipotálamo/metabolismo , Lactancia/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo
7.
Front Neural Circuits ; 17: 1340497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298741

RESUMEN

Parental care plays a crucial role in the physical and mental well-being of mammalian offspring. Although sexually naïve male mice, as well as certain strains of female mice, display aggression toward pups, they exhibit heightened parental caregiving behaviors as they approach the time of anticipating their offspring. In this Mini Review, I provide a concise overview of the current understanding of distinct limbic neural types and their circuits governing both aggressive and caregiving behaviors toward infant mice. Subsequently, I delve into recent advancements in the understanding of the molecular, cellular, and neural circuit mechanisms that regulate behavioral plasticity during the transition to parenthood, with a specific focus on the sex steroid hormone estrogen and neural hormone oxytocin. Additionally, I explore potential sex-related differences and highlight some critical unanswered questions that warrant further investigation.


Asunto(s)
Agresión , Conducta Paterna , Humanos , Ratones , Masculino , Animales , Femenino , Conducta Paterna/fisiología , Agresión/fisiología , Oxitocina , Mamíferos
8.
PLoS Biol ; 20(10): e3001813, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36194579

RESUMEN

The reduced sleep duration previously observed in Camk2b knockout mice revealed a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII)ß as a sleep-promoting kinase. However, the underlying mechanism by which CaMKIIß supports sleep regulation is largely unknown. Here, we demonstrate that activation or inhibition of CaMKIIß can increase or decrease sleep duration in mice by almost 2-fold, supporting the role of CaMKIIß as a core sleep regulator in mammals. Importantly, we show that this sleep regulation depends on the kinase activity of CaMKIIß. A CaMKIIß mutant mimicking the constitutive-active (auto)phosphorylation state promotes the transition from awake state to sleep state, while mutants mimicking subsequent multisite (auto)phosphorylation states suppress the transition from sleep state to awake state. These results suggest that the phosphorylation states of CaMKIIß differently control sleep induction and maintenance processes, leading us to propose a "phosphorylation hypothesis of sleep" for the molecular control of sleep in mammals.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calcio , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Sueño
9.
Elife ; 112022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36281647

RESUMEN

Decades of studies have revealed molecular and neural circuit bases for body weight homeostasis. Neural hormone oxytocin (Oxt) has received attention in this context because it is produced by neurons in the paraventricular hypothalamic nucleus (PVH), a known output center of hypothalamic regulation of appetite. Oxt has an anorexigenic effect, as shown in human studies, and can mediate satiety signals in rodents. However, the function of Oxt signaling in the physiological regulation of appetite has remained in question, because whole-body knockout (KO) of Oxt or Oxt receptor (Oxtr) has little effect on food intake. We herein show that acute conditional KO (cKO) of Oxt selectively in the adult PVH, but not in the supraoptic nucleus, markedly increases body weight and food intake, with an elevated level of plasma triglyceride and leptin. Intraperitoneal administration of Oxt rescues the hyperphagic phenotype of the PVH Oxt cKO model. Furthermore, we show that cKO of Oxtr selectively in the posterior hypothalamic regions, especially the arcuate hypothalamic nucleus, a primary center for appetite regulations, phenocopies hyperphagic obesity. Collectively, these data reveal that Oxt signaling in the arcuate nucleus suppresses excessive food intake.


Asunto(s)
Leptina , Oxitocina , Humanos , Ratones , Animales , Hiperfagia , Obesidad/genética , Núcleo Hipotalámico Paraventricular , Peso Corporal , Hipotálamo , Hipotálamo Posterior , Triglicéridos
10.
Curr Biol ; 32(17): 3821-3829.e6, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35868323

RESUMEN

Pulsatile release of the hormone oxytocin (OT) mediates uterine contraction during parturition and milk ejection during lactation.1-3 These pulses are generated by the unique activity patterns of the central neuroendocrine OT neurons located in the paraventricular and supraoptic hypothalamus. Classical studies have characterized putative OT neurons by in vivo extracellular recording techniques in rats and rabbits.1,4-10 Due to technical limitations, however, the identity of OT neurons in these previous studies was speculative based on their electrophysiological characteristics and axonal projection to the posterior pituitary, not on OT gene expression. To pinpoint OT neural activities among other hypothalamic neurons that project to the pituitary11,12 and make better use of cell-type-specific neuroscience toolkits,13 a mouse model needs to be developed for the studies of parturition and lactation. We herein introduce viral genetic approaches in mice to characterize the maternal activities of OT neurons by fiber photometry. A sharp photometric peak of OT neurons appeared at approximately 520 s following simultaneous suckling stimuli from three pups. The amplitude of the peaks increased as the mother mice experienced lactation, irrespective of the age of the pups, suggesting the intrinsic plasticity of maternal OT neurons. Based on a mono-synaptic input map to OT neurons, we pharmacogenetically activated the inhibitory neurons in the bed nucleus of the stria terminalis and found the suppression of the activities of OT neurons. Collectively, our study illuminates temporal dynamics in the maternal neural activities of OT neurons and identifies one of its modulatory inputs.


Asunto(s)
Lactancia , Oxitocina , Animales , Femenino , Hipotálamo/metabolismo , Lactancia/fisiología , Ratones , Neuronas/fisiología , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Embarazo , Tálamo
11.
Neuron ; 110(15): 2455-2469.e8, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35654036

RESUMEN

The pheromonal information received by the vomeronasal system plays a crucial role in regulating social behaviors such as aggression in mice. Despite accumulating knowledge of the brain regions involved in aggression, the specific vomeronasal receptors and the exact neural circuits responsible for pheromone-mediated aggression remain unknown. Here, we identified one murine vomeronasal receptor, Vmn2r53, that is activated by urine from males of various strains and is responsible for evoking intermale aggression. We prepared a purified pheromonal fraction and Vmn2r53 knockout mice and applied genetic tools for neuronal activity recording, manipulation, and circuit tracing to decipher the neural mechanisms underlying Vmn2r53-mediated aggression. We found that Vmn2r53-mediated aggression is regulated by specific neuronal populations in the ventral premammillary nucleus and the ventromedial hypothalamic nucleus. Together, our results shed light on the hypothalamic regulation of male aggression mediated by a single vomeronasal receptor.


Asunto(s)
Agresión , Órgano Vomeronasal , Agresión/fisiología , Animales , Hipotálamo , Masculino , Ratones , Neuronas/fisiología , Feromonas/fisiología , Núcleo Hipotalámico Ventromedial , Órgano Vomeronasal/fisiología
12.
Neuron ; 110(12): 2009-2023.e5, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35443152

RESUMEN

The adult brain can flexibly adapt behaviors to specific life-stage demands. For example, while sexually naive male mice are aggressive to the conspecific young, they start to provide caregiving to infants around the time when their own young are expected. How such behavioral plasticity is implemented at the level of neural connections remains poorly understood. Here, using viral-genetic approaches, we establish hypothalamic oxytocin neurons as the key regulators of the parental caregiving behaviors of male mice. We then use rabies-virus-mediated unbiased screening to identify excitatory neural connections originating from the lateral hypothalamus to the oxytocin neurons to be drastically strengthened when male mice become fathers. These connections are functionally relevant, as their activation suppresses pup-directed aggression in virgin males. These results demonstrate the life-stage associated, long-distance, and cell-type-specific plasticity of neural connections in the hypothalamus, the brain region that is classically assumed to be hard-wired.


Asunto(s)
Agresión , Oxitocina , Agresión/fisiología , Animales , Humanos , Hipotálamo/fisiología , Masculino , Ratones , Neuronas/fisiología , Padres
13.
Nat Commun ; 13(1): 556, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115521

RESUMEN

The vomeronasal system plays an essential role in sensing various environmental chemical cues. Here we show that mice exposed to blood and, consequently, hemoglobin results in the activation of vomeronasal sensory neurons expressing a specific vomeronasal G protein-coupled receptor, Vmn2r88, which is mediated by the interaction site, Gly17, on hemoglobin. The hemoglobin signal reaches the medial amygdala (MeA) in both male and female mice. However, it activates the dorsal part of ventromedial hypothalamus (VMHd) only in lactating female mice. As a result, in lactating mothers, hemoglobin enhances digging and rearing behavior. Manipulation of steroidogenic factor 1 (SF1)-expressing neurons in the VMHd is sufficient to induce the hemoglobin-mediated behaviors. Our results suggest that the oxygen-carrier hemoglobin plays a role as a chemosensory signal, eliciting behavioral responses in mice in a state-dependent fashion.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Biomarcadores/sangre , Hemoglobinas/metabolismo , Células Receptoras Sensoriales/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Órgano Vomeronasal/metabolismo , Animales , Femenino , Hemoglobinas/genética , Hibridación in Situ/métodos , Lactancia , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Globinas beta/genética , Globinas beta/metabolismo
14.
Cell Rep ; 35(9): 109204, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077719

RESUMEN

Maternal mammals exhibit heightened motivation to care for offspring, but the underlying neuromolecular mechanisms have yet to be clarified. Here, we report that the calcitonin receptor (Calcr) and its ligand amylin are expressed in distinct neuronal populations in the medial preoptic area (MPOA) and are upregulated in mothers. Calcr+ MPOA neurons activated by parental care project to somatomotor and monoaminergic brainstem nuclei. Retrograde monosynaptic tracing reveals that significant modification of afferents to Calcr+ neurons occurs in mothers. Knockdown of either Calcr or amylin gene expression hampers risk-taking maternal care, and specific silencing of Calcr+ MPOA neurons inhibits nurturing behaviors, while pharmacogenetic activation prevents infanticide in virgin males. These data indicate that Calcr+ MPOA neurons are required for both maternal and allomaternal nurturing behaviors and that upregulation of amylin-Calcr signaling in the MPOA at least partially mediates risk-taking maternal care, possibly via modified connectomics of Calcr+ neurons postpartum.


Asunto(s)
Conducta Animal/fisiología , Conducta Materna/fisiología , Área Preóptica/metabolismo , Receptores de Calcitonina/metabolismo , Asunción de Riesgos , Transducción de Señal , Animales , Estrógenos/metabolismo , Femenino , Silenciador del Gen , Marcación de Gen , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Lactancia , Ligandos , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Periodo Posparto , Prolactina/metabolismo , Sinapsis/metabolismo , Regulación hacia Arriba
15.
Cell Rep Methods ; 1(2): 100038, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35475238

RESUMEN

Recent advancements in tissue clearing technologies have offered unparalleled opportunities for researchers to explore the whole mouse brain at cellular resolution. With the expansion of this experimental technique, however, a scalable and easy-to-use computational tool is in demand to effectively analyze and integrate whole-brain mapping datasets. To that end, here we present CUBIC-Cloud, a cloud-based framework to quantify, visualize, and integrate mouse brain data. CUBIC-Cloud is a fully automated system where users can upload their whole-brain data, run analyses, and publish the results. We demonstrate the generality of CUBIC-Cloud by a variety of applications. First, we investigated the brain-wide distribution of five cell types. Second, we quantified Aß plaque deposition in Alzheimer's disease model mouse brains. Third, we reconstructed a neuronal activity profile under LPS-induced inflammation by c-Fos immunostaining. Last, we show brain-wide connectivity mapping by pseudotyped rabies virus. Together, CUBIC-Cloud provides an integrative platform to advance scalable and collaborative whole-brain mapping.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Ratones , Animales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Enfermedad de Alzheimer/diagnóstico por imagen , Neuronas
16.
Nat Commun ; 11(1): 1982, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341345

RESUMEN

Whole-organ/body three-dimensional (3D) staining and imaging have been enduring challenges in histology. By dissecting the complex physicochemical environment of the staining system, we developed a highly optimized 3D staining imaging pipeline based on CUBIC. Based on our precise characterization of biological tissues as an electrolyte gel, we experimentally evaluated broad 3D staining conditions by using an artificial tissue-mimicking material. The combination of optimized conditions allows a bottom-up design of a superior 3D staining protocol that can uniformly label whole adult mouse brains, an adult marmoset brain hemisphere, an ~1 cm3 tissue block of a postmortem adult human cerebellum, and an entire infant marmoset body with dozens of antibodies and cell-impermeant nuclear stains. The whole-organ 3D images collected by light-sheet microscopy are used for computational analyses and whole-organ comparison analysis between species. This pipeline, named CUBIC-HistoVIsion, thus offers advanced opportunities for organ- and organism-scale histological analysis of multicellular systems.


Asunto(s)
Encéfalo/patología , Cerebelo/patología , Electrólitos , Imagenología Tridimensional , Microscopía Fluorescente , Adulto , Animales , Animales Recién Nacidos , Callithrix , Femenino , Colorantes Fluorescentes , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen Óptica
17.
J Neurosci ; 40(20): 3981-3994, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32284340

RESUMEN

Male animals may show alternative behaviors toward infants: attack or parenting. These behaviors are triggered by pup stimuli under the influence of the internal state, including the hormonal environment and/or social experiences. Converging data suggest that the medial preoptic area (MPOA) contributes to the behavioral selection toward the pup. However, the neural mechanisms underlying how integrated stimuli affect the MPOA-dependent behavioral selection remain unclear. Here we focus on the amygdalohippocampal area (AHi) that projects to MPOA and expresses oxytocin receptor, a hormone receptor mediating social behavior toward pups. We describe the activation of MPOA-projection AHi neurons in male mice by social contact with pups. Input mapping using the TRIO method reveals that MPOA-projection AHi neurons receive prominent inputs from several regions, including the thalamus, hypothalamus, and olfactory cortex. Electrophysiological and histologic analysis demonstrates that oxytocin modulates inhibitory synaptic responses on MPOA-projection AHi neurons. In addition, AHi forms the excitatory monosynapse to MPOA, and pharmacological activation of MPOA-projection AHi neurons enhances only aggressive behavior, but not parental behavior. Interestingly, this promoted behavior was related to social experience in male mice. Collectively, our results identified a presynaptic partner of MPOA that can integrate sensory input and hormonal state, and trigger pup-directed aggression.SIGNIFICANCE STATEMENT The medial preoptic area (MPOA) plays critical roles in parental behavior, such as motor control, motivation, and social interaction. The MPOA projects to multiple brain regions, and these projections contribute to several neural controls in parental behavior. In contrast, how inputs to MPOA are regulated by social and environmental information is poorly understood. In this study, we focus on the amygdalohippocampal area (AHi) that connects to MPOA and expresses oxytocin receptor. We demonstrate the disruption of the expression of parental behavior triggered by the activation of MPOA-projection AHi neurons. This behavior may be regulated not only by oxytocin but also by neural input from several regions.


Asunto(s)
Agresión/fisiología , Amígdala del Cerebelo/fisiología , Hipocampo/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Área Preóptica/fisiología , Amígdala del Cerebelo/citología , Animales , Mapeo Encefálico , Fenómenos Electrofisiológicos , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibición Neural , Conducta Paterna , Área Preóptica/citología , Receptores de Oxitocina/metabolismo , Conducta Social , Medio Social
18.
Sci Rep ; 9(1): 7132, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31073137

RESUMEN

Olfaction guides goal-directed behaviours including feeding. To investigate how central olfactory neural circuits control feeding behaviour in mice, we performed retrograde tracing from the lateral hypothalamus (LH), an important feeding centre. We observed a cluster of retrogradely labelled cells distributed in the posteroventral region of the olfactory peduncle. Histochemical analyses revealed that the majority of these retrogradely labelled projection neurons expressed glutamic acid decarboxylase 65/67 (GAD65/67), but not vesicular glutamate transporter 1 (VGluT1). We named this region containing GABAergic projection neurons the ventral olfactory nucleus (VON) to differentiate it from the conventional olfactory peduncle. VON neurons were less immunoreactive for DARPP-32, a striatal neuron marker, compared to neurons in the olfactory tubercle and nucleus accumbens, which distinguished the VON from the ventral striatum. Fluorescent labelling confirmed putative synaptic contacts between VON neurons and olfactory bulb projection neurons. Rabies-virus-mediated trans-synaptic labelling revealed that VON neurons received synaptic inputs from the olfactory bulb, other olfactory cortices, horizontal limb of the diagonal band, and prefrontal cortex. Collectively, these results identify novel GABAergic projection neurons in the olfactory cortex that may integrate olfactory sensory and top-down inputs and send inhibitory output to the LH, which may modulate odour-guided LH-related behaviours.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Área Hipotalámica Lateral/metabolismo , Corteza Olfatoria/metabolismo , Virus de la Rabia/fisiología , Animales , Conducta Alimentaria , Neuronas GABAérgicas/virología , Glutamato Descarboxilasa/metabolismo , Área Hipotalámica Lateral/virología , Masculino , Ratones , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/virología , Corteza Olfatoria/virología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
19.
Nat Commun ; 9(1): 4463, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367054

RESUMEN

Mating drive is balanced by a need to safeguard resources for offspring, yet the neural basis for negative regulation of mating remains poorly understood. In rodents, pheromones critically regulate sexual behavior. Here, we observe suppression of adult female sexual behavior in mice by exocrine gland-secreting peptide 22 (ESP22), a lacrimal protein from juvenile mice. ESP22 activates a dedicated vomeronasal receptor, V2Rp4, and V2Rp4 knockout eliminates ESP22 effects on sexual behavior. Genetic tracing of ESP22-responsive neural circuits reveals a critical limbic system connection that inhibits reproductive behavior. Furthermore, V2Rp4 counteracts a highly related vomeronasal receptor, V2Rp5, that detects the male sex pheromone ESP1. Interestingly, V2Rp4 and V2Rp5 are encoded by adjacent genes, yet couple to distinct circuits and mediate opposing effects on female sexual behavior. Collectively, our study reveals molecular and neural mechanisms underlying pheromone-mediated sexual rejection, and more generally, how inputs are routed through olfactory circuits to evoke specific behaviors.


Asunto(s)
Sistema Límbico/metabolismo , Feromonas/metabolismo , Receptores de Feromonas/metabolismo , Conducta Sexual Animal , Órgano Vomeronasal/metabolismo , Animales , Femenino , Aparato Lagrimal/metabolismo , Sistema Límbico/citología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Neuronas/metabolismo , Feromonas/farmacología , Proteínas Proto-Oncogénicas c-fos/análisis , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Feromonas/deficiencia , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología
20.
Curr Biol ; 28(8): 1213-1223.e6, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29606417

RESUMEN

Rodents use the vomeronasal olfactory system to acquire both inter- and intra-specific information from the external environment and take appropriate actions. For example, urinary proteins from predator species elicit avoidance in mice, while those from male mice attract female mice. In addition to urinary proteins, recent studies have highlighted the importance of lacrimal proteins for intra-specific communications in mice. However, whether the tear fluid of other species also mediates social signals remains unknown. Here, we show that a lacrimal protein in rats (predators of mice), called cystatin-related protein 1 (ratCRP1), activates the vomeronasal system of mice. This protein is specifically produced by adult male rats in a steroid hormone-dependent manner, activates the vomeronasal system of female rats, and enhances stopping behavior. When detected by mice, ratCRP1 activates the medial hypothalamic defensive circuit, resulting in decreased locomotion coupled with lowered body temperature and heart rate. Notably, ratCRP1 is recognized by multiple murine type 2 vomeronasal receptors, including Vmn2r28. CRISPR/Cas9-mediated deletion of vmn2r28 impaired both ratCRP1-induced neural activation of the hypothalamic center and decrease of locomotor activity in mice. Taken together, these data reveal the neural and molecular basis by which a tear fluid compound in rats affects the behavior of mice. Furthermore, our study reveals a case in which a single compound that mediates an intra-specific signal in a predator species also functions as an inter-specific signal in the prey species.


Asunto(s)
Proteínas del Ojo/fisiología , Órgano Vomeronasal/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Cistatinas/metabolismo , Femenino , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Odorantes , Conducta Predatoria , Proteínas/metabolismo , Ratas , Roedores/fisiología , Olfato/fisiología , Especificidad de la Especie , Órgano Vomeronasal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA