Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ArXiv ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38855551

RESUMEN

Background: Predictive biomarkers of treatment response are lacking for metastatic clearcell renal cell carcinoma (ccRCC), a tumor type that is treated with angiogenesis inhibitors, immune checkpoint inhibitors, mTOR inhibitors and a HIF2 inhibitor. The Angioscore, an RNA-based quantification of angiogenesis, is arguably the best candidate to predict anti-angiogenic (AA) response. However, the clinical adoption of transcriptomic assays faces several challenges including standardization, time delay, and high cost. Further, ccRCC tumors are highly heterogenous, and sampling multiple areas for sequencing is impractical. Approach: Here we present a novel deep learning (DL) approach to predict the Angioscore from ubiquitous histopathology slides. In order to overcome the lack of interpretability, one of the biggest limitations of typical DL models, our model produces a visual vascular network which is the basis of the model's prediction. To test its reliability, we applied this model to multiple cohorts including a clinical trial dataset. Results: Our model accurately predicts the RNA-based Angioscore on multiple independent cohorts (spearman correlations of 0.77 and 0.73). Further, the predictions help unravel meaningful biology such as association of angiogenesis with grade, stage, and driver mutation status. Finally, we find our model is able to predict response to AA therapy, in both a real-world cohort and the IMmotion150 clinical trial. The predictive power of our model vastly exceeds that of CD31, a marker of vasculature, and nearly rivals the performance (c-index 0.66 vs 0.67) of the ground truth RNA-based Angioscore at a fraction of the cost. Conclusion: By providing a robust yet interpretable prediction of the Angioscore from histopathology slides alone, our approach offers insights into angiogenesis biology and AA treatment response.

2.
JCI Insight ; 9(10)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38775158

RESUMEN

Sarcomatoid dedifferentiation is common to multiple renal cell carcinoma (RCC) subtypes, including chromophobe RCC (ChRCC), and is associated with increased aggressiveness, resistance to targeted therapies, and heightened sensitivity to immunotherapy. To study ChRCC dedifferentiation, we performed multiregion integrated paired pathological and genomic analyses. Interestingly, ChRCC dedifferentiates not only into sarcomatoid but also into anaplastic and glandular subtypes, which are similarly associated with increased aggressiveness and metastases. Dedifferentiated ChRCC shows loss of epithelial markers, convergent gene expression, and whole genome duplication from a hypodiploid state characteristic of classic ChRCC. We identified an intermediate state with atypia and increased mitosis but preserved epithelial markers. Our data suggest that dedifferentiation is initiated by hemizygous mutation of TP53, which can be observed in differentiated areas, as well as mutation of PTEN. Notably, these mutations become homozygous with duplication of preexisting monosomes (i.e., chromosomes 17 and 10), which characterizes the transition to dedifferentiated ChRCC. Serving as potential biomarkers, dedifferentiated areas become accentuated by mTORC1 activation (phospho-S6) and p53 stabilization. Notably, dedifferentiated ChRCC share gene enrichment and pathway activation features with other sarcomatoid RCC, suggesting convergent evolutionary trajectories. This study expands our understanding of aggressive ChRCC, provides insight into molecular mechanisms of tumor progression, and informs pathologic classification and diagnostics.


Asunto(s)
Carcinoma de Células Renales , Desdiferenciación Celular , Neoplasias Renales , Mutación , Proteína p53 Supresora de Tumor , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Desdiferenciación Celular/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fosfohidrolasa PTEN/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino
3.
J Clin Invest ; 134(7)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386415

RESUMEN

Translocation renal cell carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed clear cell RCC driver) disrupted nephrogenesis and glomerular development, causing neonatal death, while the clear cell RCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as alveolar soft part sarcoma) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an epithelial-mesenchymal transition. Electron microscopy of tRCC tumors showed lysosome expansion, and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical pathways (cell cycle, lysosome, and mTORC1) and less established pathways such as Myc, E2F, and inflammation (IL-6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc.). Therapeutic trials (adjusted for human drug exposures) showed antitumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis, including the cell of origin, and characterizes diverse mouse models available for research.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Recién Nacido , Humanos , Carcinoma de Células Renales/patología , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Factores de Transcripción/genética , Genómica , Neoplasias Renales/patología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Translocación Genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Unión al ARN/genética
4.
Clin Cancer Res ; 28(24): 5405-5418, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36190432

RESUMEN

PURPOSE: HIF2α is a key driver of kidney cancer. Using a belzutifan analogue (PT2399), we previously showed in tumorgrafts (TG) that ∼50% of clear cell renal cell carcinomas (ccRCC) are HIF2α dependent. However, prolonged treatment induced resistance mutations, which we also identified in humans. Here, we evaluated a tumor-directed, systemically delivered, siRNA drug (siHIF2) active against wild-type and resistant-mutant HIF2α. EXPERIMENTAL DESIGN: Using our credentialed TG platform, we performed pharmacokinetic and pharmacodynamic analyses evaluating uptake, HIF2α silencing, target gene inactivation, and antitumor activity. Orthogonal RNA-sequencing studies of siHIF2 and PT2399 were pursued to define the HIF2 transcriptome. Analyses were extended to a TG line generated from a study biopsy of a siHIF2 phase I clinical trial (NCT04169711) participant and the corresponding patient, an extensively pretreated individual with rapidly progressive ccRCC and paraneoplastic polycythemia likely evidencing a HIF2 dependency. RESULTS: siHIF2 was taken up by ccRCC TGs, effectively depleted HIF2α, deactivated orthogonally defined effector pathways (including Myc and novel E2F pathways), downregulated cell cycle genes, and inhibited tumor growth. Effects on the study subject TG mimicked those in the patient, where HIF2α was silenced in tumor biopsies, circulating erythropoietin was downregulated, polycythemia was suppressed, and a partial response was induced. CONCLUSIONS: To our knowledge, this is the first example of functional inactivation of an oncoprotein and tumor suppression with a systemic, tumor-directed, RNA-silencing drug. These studies provide a proof-of-principle of HIF2α inhibition by RNA-targeting drugs in ccRCC and establish a paradigm for tumor-directed RNA-based therapeutics in cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Policitemia , Animales , Humanos , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , ARN Interferente Pequeño/genética , Ensayos Clínicos Fase I como Asunto
5.
Eur Urol Oncol ; 5(6): 687-694, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36115820

RESUMEN

BACKGROUND: Most patients diagnosed with renal cancer today present with small renal masses (SRMs). Although these patients have a low risk of dying from their disease and many are followed with active surveillance protocols, a small subset of renal cell carcinomas (RCCs) behave aggressively. Knowledge regarding features of aggressive behavior would enable better adoption of active surveillance strategies among these patients. OBJECTIVE: We sought to improve prognostic models to predict metastasis-free survival after nephrectomy through focused analyses of clinicopathologic characteristics of SRMs associated with adverse outcomes. DESIGN, SETTING, AND PARTICIPANTS: We identified consecutive patients with surgically resected SRMs (≤4 cm) at the University of Texas Southwestern Kidney Cancer Program between 1998 and 2020. In addition, we evaluated the ability of SRMs to form tumors when implanted in mice, an indicator of tumor aggressiveness. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We examined the clinicopathologic factors associated with metastasis including prospectively performed BAP1 immunohistochemistry at our Clinical Laboratory Improvement Amendments laboratory. Multivariable Cox proportional hazard regression was used to predict metastasis-free survival. RESULTS AND LIMITATIONS: A total of 3900 evaluable nephrectomies (from 3674 ethnically diverse patients) were identified, of which 1984 (51%) were SRMs including 1720 RCC. Of these patients with RCC (SRMRCC), 1576 did not have synchronous or metachronous larger RCCs and among these, 37 (2%) developed metastases. SRMRCC that metastasized were significantly enriched for aggressive morphologic phenotypes and engrafted in mice at comparable rates as larger metastatic tumors. BAP1 loss remained significantly associated with metastasis-free survival after accounting for TNM (tumor-node-metastasis) stage and SSIGN (stage, size, grade, and necrosis) score in multivariable analysis. CONCLUSIONS: We identified clinicopathologic features that influence metastasis-free survival for patients with SRMRCC. If validated independently, these data should assist with patient prognosis and help with active surveillance strategies. PATIENT SUMMARY: We report the identification of features of aggressiveness in small renal tumors that influence the likelihood of metastases after surgery.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Ratones , Animales , Carcinoma de Células Renales/patología , Estadificación de Neoplasias , Neoplasias Renales/patología , Nefrectomía/métodos , Riñón/patología
6.
Mod Pathol ; 35(3): 333-343, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34538873

RESUMEN

Low-grade oncocytic tumor (LOT) of the kidney is a recently described entity with poorly understood pathogenesis. Using next-generation sequencing (NGS) and complementary approaches, we provide insight into its biology. We describe 22 LOT corresponding to 7 patients presenting with a median age of 75 years (range 63-86 years) and male to female ratio 2:5. All 22 tumors demonstrated prototypical microscopic features. Tumors were well-circumscribed and solid. They were composed of sheets of tumor cells in compact nests. Tumor cells had eosinophilic cytoplasm, round to oval nuclei (without nuclear membrane irregularities), focal subtle perinuclear halos, and occasional binucleation. Sharply delineated edematous stromal islands were often observed. Tumor cells were positive for PAX8, negative for CD117, and exhibited diffuse and strong cytokeratin-7 expression. Six patients presented with pT1 tumors. At a median follow-up of 29 months, four patients were alive without recurrence (three patients had died from unrelated causes). All tumors were originally classified as chromophobe renal cell carcinoma, eosinophilic variant (chRCC-eo). While none of the patients presented with known syndromic features, one patient with multiple bilateral LOTs was subsequently found to have a likely pathogenic germline TSC1 mutation. Somatic, likely activating, mutations in MTOR and RHEB were identified in all other evaluable LOTs. As assessed by phospho-S6 and phospho-4E-BP1, mTOR complex 1 (mTORC1) was activated across all cases but to different extent. MTOR mutant LOT exhibited lower levels of mTORC1 activation, possibly related to mTORC1 dimerization and the preservation of a wild-type MTOR copy (retained chromosome 1). Supporting its distinction from related entities, gene expression analyses showed that LOT clustered separately from classic chRCC, chRCC-eo, and RO. In summary, converging mTORC1 pathway mutations, mTORC1 complex activation, and a distinctive gene expression signature along with characteristic phenotypic features support LOT designation as a distinct entity with both syndromic and non-syndromic cases associated with an indolent course.


Asunto(s)
Adenoma Oxifílico , Carcinoma de Células Renales , Neoplasias Renales , Adenoma Oxifílico/genética , Adenoma Oxifílico/patología , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Femenino , Células Germinativas/química , Células Germinativas/patología , Humanos , Riñón/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Mutación , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA